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1. Introduction  
The big potential of integrated optical refractometric sensing devices is evidenced by the large 
number of publications in the field, as is seen in the review papers of, for example [1-2]. 
Many different device implementations have been considered in the literature. This is related 
to technological issues and the nature of the process to be monitored on the one hand, but also 
to the pursuit of devices with a high sensitivity, and so a low limit of detection (LOD), on the 
other hand. As a measure of sensitivity, scientists often characterize their device by the 
spectral shift per refractive index unit (RIU) change. An aim of this paper is to elucidate why 
this is only partly meaningful, as also noted by [3]. To that end a definition for the sensitivity 
is used [4] that is directly related to the LOD for index changes [4].  
     The main aim of this paper is to discuss which physical quantities are of relevance for a 
high sensitivity. A newly derived expression relating the group delays of the output fields of 
an arbitrary structure to the ratio of the volume integrated time-averaged energy density and 
input power is presented. It is shown that sensitivity and partial group delay, i.e., the part of 
the group delay originating from the material to be sensed, can be converted into each other 
using a simple Mach-Zehnder like interferometric set-up. From the above it follows that a 
large partial group delay for a certain structure is sufficient to construct a device with large 
sensitivity.  



     The rest of this paper is organized as follows. In section 2 our definition for the sensitivity 
is presented and its relation with the LOD (for index changes) is discussed, in relation to the 
definition based on spectral shift per RIU. In section 3 the derivation of the aforementioned 
general relation for group delay is presented. The relation is illustrated via a simple example 
in section 4. In section 5 we discuss the impact of this relation in regards to sensitivity and the 
relevance of group delay for sensitivity. The paper ends with conclusions in section 6.  

2. Sensitivity in refractometric sensing 
In this section we will introduce and discuss our definition of the sensitivity S, assuming that 
the index changes of a sample material present in the sensing set-up, sn , is monitored. It is 
further assumed that the wavelength λ  is scanned on sensing. Assuming that the dominant 
noise is proportional to the transmittance, as a consequence of, for example, power 
fluctuations of the source, variations in detector responsivity, and mechanical instabilities, the 
sensitivity is defined by [4] 

                                                     
ln

s

TS n
∂= ∂ ,  (1) 

where T is the transmittance corresponding to the chosen output and input. As a constraint to 
the above, T should not be too low as then the above assumption no longer holds, owing to the 
presence of dark current noise and shot noise. The LOD can be expressed by [4] 

                                             ln max/ ( )TLOD S Mασ=   (2) 

with lnTσ  the standard deviation of the noise, M the number of sampling points and α  a 
proportionality constant (typically α~2-4) depending on the shape of the response curve. The 
subscript max indicates that the maximum value over a considered spectral response curve is 
taken. It is noted that if the signal is diminished by a factor of 2 (with conservation of signal to 
noise ratio, and therefore of lnTσ ), this leads to an unaltered S, and therefore to an unchanged 
LOD, according to the definition (1). A further justification of Eq. (1) follows from 
considering two identical cascaded sensing devices, which leads to a doubling of the LOD, as 
expected. Definition (1) is our preferred definition of the sensitivity and will be used further 
on in this paper.  

2.1 An alternative definition of the sensitivity  
     Next we will discuss the shortcoming of an alternative definition of sensitivity based upon 
the spectral shift per RIU often used in the literature. Huge spectral shifts in sensing devices 
can be achieved via a well-chosen device lay out and parameters. Such devices have the big 
advantage of relaxing the constraints on spectral resolution, but are not necessarily an 
improvement with regards to S; this is discussed next, using two examples from the literature.  
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Fig. 1. Illustration of the huge spectral shifts in a SP set-up: a) schematic of the set-up, b) a typical response curve 

with R the reflectance, and c) idealized dispersion curves for the excitation (dotted line), the SP (solid line), and for 
the SP after a small modal index change Nδ  (dashed line). 

A surface plasmon sensing set-up 
     It has been shown that surface plasmon (SP) sensing set-ups demonstrate large spectral 
shifts on sensing [5,6] if the effective index of the SP, SPN , is almost equal to the effective 
index excN  of the excitation beam, ( excN sinpn θ= , where pn  is the dispersive index of the 
used prism and θ  the angle of incidence at the base of the prism: i.e., prism-sample interface) 
over a wide wavelength range (see Fig. 1). The resonance wavelength, corresponding to 
minimum reflectance, is determined by the intersection point of the two curves. Therefore, a 
small change Nδ  of SPN , owing to an index change of the sensed medium, leads to a huge 
shift of the resonance wavelength. However, a second consequence of SP excN N NΔ ≡ −  being 
small over a wide wavelength range is that the reflectance dip is spectrally wide. The two 
effects counteract each other as expressed by 

                                       ln ln SP

s SP s

NT TS
n N n

λ λ λ

⎛ ⎞ ⎛ ⎞∂∂ ∂
= = ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

,       (3) 

where T is the reflectance, leading to  
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λ
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⎛ ⎞ ⎛ ⎞∂∂ ∂⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (4) 

In the above equation the subscript SPN  indicates that the considered quantity is constant 
apart from dispersive changes. The first term at the right hand side of Eq. (4) is inversely 
proportional to the width of the SP reflectance dip, which itself is inversely proportional to 
| / |N λ∂Δ ∂ . Therefore, the first term is directly proportional to | / |N λ∂Δ ∂ . The second term 
on the right hand side, which corresponds to the spectral shift of (say) the dip for a small 
change of SPN  (on sensing), is inversely proportional to | / |N λ∂Δ ∂ , and indeed the two 
effects of SP excN N≈  have no net result for S.  

A sensing set-up consisting of two cascaded cavities 
     A second example is the sensing set-up presented and discussed in detail by [7,8], 
consisting of two cascaded cylindrical cavities such that the transmission combs have a 



slightly different free spectral range. One of the cavities (transmittance 1T ) is sensitive to 
index changes and the second one (transmittance 2T )  serves as a filter. As reported [7,8], the 
total spectral shift of the total transmittance T=T1T2 is huge, in particular if the difference 
between the two free spectral ranges is small. However, it is easy to see that the sensitivity 
according to definition (1) is identical to that of the sensing cavity alone as 2T  does not 
depend on sn .  

3. A general relation for group delay  
In this section we will present expressions for an arbitrary photonic structure, which is non-
absorbing and for which there is no spatial overlap between the (different) outgoing and 
incoming fields that relate the partial group delays of the different output channels to the ratio 
of the partial electric energy and the input power. The term ‘partial’ refers to the sample 
material of the considered structure. These expressions will be used in Section 5 to show the 
relevance of the above ratio for the sensitivity. As a byproduct of the presented theory a 
general relation is derived showing that the sum of the (total) group delays weighted by the 
transmittances of the corresponding output channels is equal to the ratio of the time-averaged 
energy and the input power. 

We consider an arbitrary, non-magnetic ( 1μ = ) non-absorbing structure with Q 
independent output modes with corresponding transmittances , 1,..,mT m Q= , where 

1
1Q

mm
T

=
=∑ , excited by light at angular frequency ω  with an input power inP . A time 

dependence of the form exp( )i tω  is assumed. The structure consists of P different dispersive 
and isotropic materials having refractive indices , 1,..,jn j P= , with jε =nj

2 denoting the 
relative permeability of material j. The boundary of the structure should be defined such that it 
includes all materials that affect the output field for a given input field. For example, 
evanescent fields of waveguides (WGs) being part of the structure should be well-confined to 
it. It is further assumed that fields leaving the structure are not re-entering it via reflections, 
and also that the transmittance for each output mode m can be written as  

2| |m mT t= ,  (5) 

with mt  denoting the modal transmission coefficient of output channel m. The transmission 
coefficient mt  is a complex variable having a phase corresponding to the dominant (say) 
electric field components of input and output fields.  
     As mentioned above, the resulting formula will hold for non-absorbing materials. 
However, for the derivation we will need the introduction of small absorption in the materials 
of the structure by assuming 0, 1,..,ln l P′′ < = . Thereafter, to obtain the desired expressions, 
we will consider the limit 0ln′′ → . Here and in the rest of the paper we denote real and 
imaginary parts of complex quantities by a single ( ' ) and double prime ( " ), respectively.  
     For the derivation below it is further required that we may write for the outgoing power  

                                                      2
1
| |Q

out in mm
P P t

=
= ∑ ,  (6) 

also for the case that absorbing materials are present. But, as spatially overlapping modes in 
an absorbing structure are generally no longer orthogonal, using a power related inner 
product, the above implies that all outgoing modes should be spatially separated from each 
other and from the incoming mode, such that cross terms originating from different modes do 
not contribute to the outgoing power. Consequently, each channel supports not more than one 
mode. So, it is assumed that Eq. (6) also holds if materials of the structure are absorbing.  
     The group delay [9] of a certain output mode m is given by  



                                  ,
arg( ) ln

Im Imm m
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t t
τ

ω ω
∂ ∂⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

.   (7) 

In order to rewrite the right hand side of Eq. (7) we note that, according to wave equations as 
derived from Maxwell’s equations, the quantities describing the behavior of the optical fields 
in a structure depend on angular frequency and indices according to 1 2( , ,.....)f f n nω ω= . 
Here f is a complex analytic function of the product of ω  and the P (generally) different 
refractive indices, which may vary owing to both material changes and dispersion effects. As 
a consequence of the dependence of f on lnω , 1l P= − , we may write  
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In the above the subscript ln ω∀≠  refers to all materials other than the one labeled with l, i.e., 
the derivative of 1 2( , ,.....)f f n nω ω=  with respect to only ln ω  is considered while the 
other products ,mn m lω ≠  are constant. The subscripts ln  and 1 Pn −  denote that that the 
indicated indices are constant for a constant frequency (i.e., the corresponding materials do 
not change) but dispersive changes are taken into account. So, it follows for example:  
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Equation (8) can be rewritten using  
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leading to  
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Taking Im(ln )t  for f and also using Eq. (7) we arrive at,  

                                       , ,1

ln
Im P lm

g m g ml

t
τ τ

ω =

∂⎛ ⎞= − =⎜ ⎟∂⎝ ⎠
∑ ,  (12) 

with  

                                     
,

ln
Iml m

g m l
l

t
G

n
τ

⎛ ⎞∂
≡ − ⎜ ⎟∂⎝ ⎠

    (13) 

the partial group delay originating from material l for output mode m.  



     As mentioned above, we consider the effect of a small (negative) imaginary part of the 
index ln , denoted by ln′′ , where l labels the material. Starting from the complex Poynting 
theorem [10]  

                                 2 2
0 0( ) | | | |i iωμ ωε ε∗ ∗∇ ⋅ × = − +E H H E , (14) 

integrating the real parts over the volume of the device, V, leads to  

 2
0surface

Re[ ( )] Re[ ( ) 2 | |
l

l lV V
d d n n dτ ωε τ∗ ∗ ′ ′′∇ ⋅ × = × ⋅ =∫ ∫ ∫E H E H σ E ,  

where we used Gauss’s theorem for the left hand side and the right hand side stems from the 
material absorption in the volume containing material l, lV , with 2( )l l ln inε ∗ ′ ′′= − . It now 
follows with Eq. (6)  

                        ( ) 2
01

1 ( ) | |
l

Q
in out in m l l lm V

P P P T n n n dωε τ
=

′′ ′ ′′− = − = −∑ ∫ E . (15) 

Here the expression at the left hand side is the difference in power at the input and total 
output. Differentiation of Eq. (15) with respect to ln′′  leads to:  

         2
01 1

ln ln
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∑ ∑ ∫ E , (16) 

where we used the analyticity of mt  for the first equality. Taking the second equality of Eq. 
(16), multiplying it with / 2lG  defined by Eq. (11) and using Eq. (13) results into 
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 with Vl the volume of material l and nl is a real quantity. The left hand side of Eq. (17) 
corresponds to the partial group delays summed over the output channels and weighted by the 
transmittances of these output channels. After summing Eq. (17) over l we arrive at  
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E
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Here V is the entire volume of the considered structure.  
     A more compact form for the above equation is obtained if the following holds  

                                                
surface

Im ( ) 0d∗× ⋅ =∫ E H σ , (19) 

where the integral runs over the surface of the structure. If the structure contains WGs, Eq. 
(19) means that the corresponding modal fields have only a considerable value at the 
structure’s surface in directions perpendicular to the propagation direction of these modes. 
This corresponds to WGs approaching the structure’s surface perpendicularly. This is seen 
from the fact that for guided modes the vector Im( )∗×E H  is oriented along the transverse 
directions of a WG if it is lossless. Using Eq. (19), integrating the imaginary part of Eq. (14), 
now with real ε , over the volume of the device, and using Gauss’ theorem for the left hand 
side of the resulting equation, it follows  

                                            2 2
0 0| | | |

V V
d dμ τ εε τ=∫ ∫H E , (20) 



and Eq. (18) can be rewritten as  

                                 ,1 in

Q Poynting
m g mm V A

T Dd S dτ τ σ
⊥=

=∑ ∫ ∫ ,    (21) 

where 
in

PoyntingS
⊥

 (with 
in

Poynting
in A

P S dσ
⊥

= ∫ ) is the component of the time-averaged Poynting 

vector of the incoming field perpendicular to the surface of the input area A and D is the total 
time-averaged energy density, being the sum of the time-averaged electric energy density ED  
and the time-averaged magnetic energy density HD . The latter two are given by [11,12]  

                                         2
0[ ( ) / ] | | /4ED ε εω ω= ∂ ∂ E  (22) 

and 

                                                2
0 | | /4HD μ= H .   (23) 

It is noted that in the above derivation of Eq. (21) the correct form for ED , with material 
dispersion included, comes out automatically.  
     The left hand side of Eq. (21) corresponds to the sum of group delays weighted by their 
transmittances. It is seen that this sum is always positive (or zero) and that, only in the case of 
more than one output, at a certain output channel pulse advancement may occur, 
corresponding to , 0g mτ < .  
     As a check to the above we note that for mode propagation in a photonic crystal WG the 
result given by Eq. (21) turns into 

                                              
unit cell unit cellg inv S d Ddτ τ⊥= ∫ ∫ ,    (24) 

with gv  the group velocity of the mode, in agreement with the result of [13].  

4. Example to the relation on group delay 
To illustrate the above we consider an easy-reference 1D example, being a Fabry-Perot cavity 
consisting of a plane parallel plate with thickness L and index 2n  in a surrounding medium 
with index 1n  (see inset of Fig. 2(a)). The device boundaries are defined by two planes just 
outside the cavity. The structure is excited by a plane wave coming in perpendicularly to the 
plate. The electrical fields are given by:  
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The magnetic fields can be obtained from these using one of Maxwell’s curl equations  
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Fig. 2. Computational results for a simple Fabry-Perot cavity: a) schematic of the structure and reflectance 2T  and 

transmittance 1T , b) and c) dispersion curves of the indicated quantities. 

     The reflection coefficient for the interface between medium 2 and 1 and the modal 
coefficients for reflection and transmission are given by 
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respectively.  
     It is noted that the reflected field coincides with the incoming field and consequently Eq. 
(6) does not strictly hold in general if absorption is assumed. This is seen from the expression 
for the relative net power per unit area at the left hand side of the cavity given by the ratio of 
the z-components of the time-averaged Poynting vectors of the total field and the incoming 
field 

                        2
2, 2 1 2 1 2 2 1 1/ Re[(1 ) (1 )] / 1 | | 2 /net inP P t n t n t t n n∗ ∗ ′ ′′ ′′ ′= + − = − − . (28) 

The incoming power per unit area is given by:  

                                                 2
0 0 1 0| | / (2 )inP E k n ωμ′= .  (29) 

It is seen from Eq. (28) that Eq. (6), and consequently the first equality of Eq. (15), and Eq. 
(17) and (21) derived from it, hold only if 2 0t′′ = .  
     In Fig. 2(a) we have plotted the transmittances 1T  and 2T  of the cavity, assuming 
dispersionless materials with indices 1 1n =  and 2 10n =  and a cavity length of 10 mL μ= , 



for the indicated wavelength range. The functional values of the left and right hand side of Eq. 
(21) are given in Fig. 2(b), showing that the corresponding curves virtually coincide. The 
curves have been evaluated using analytical expressions for the group delays, based on Eq. (7) 
using Eq. (27) and the integral over the time-averaged energy density using field expressions 
of Eq. (25). The difference between the two values is small (negligible for all practical 
purposes, see Fig. 2(c)) and, as mentioned above, equal to zero if 2 0t′′ = , corresponding to 

0 22k n L mπ=  according to the second equality of Eq. (27), with m an integer.  

5. Discussion 
In this section we will discuss how partial group delay and sensitivity can be converted into 
each other and that a large ratio of the energy in the material to be sensed (labeled by s) and 
the input power is a sufficient condition to enable a high sensitivity. We assume a structure 
having properties as mentioned in the beginning of section 3 and as required for Eq. (17). We 
consider the complex quantity s

mS  defined by:  

                                                  

lns m
m

s

t
S

n
∂

≡
∂

,     (30) 

where m denotes a channel showing a large group delay. Recalling the definitions given in 
sections 2 (Eq. (1)) and 3 (Eq. (13)) it is seen that the imaginary part of s

mS  is proportional to 

,
s
g mτ  whereas the absolute value of its real part is one half of the sensitivity according to   
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where the subscript and superscript of S denote output channel and material, respectively. So, 
sensitivity and partial group delay are proportional to real and imaginary parts of the same 
complex quantity s

mS . The numerical values of the two parts can be very different, as 
illustrated by a propagating mode in a lossless photonic crystal WG structure for which the 
group delay can be very high, whereas the sensitivity is zero.  
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Fig. 3. Schematic of a MZI like set-up to convert partial group delay and sensitivity into each other. 

     Real and imaginary parts of s
mS  can be converted into each other in, for example, a Mach-

Zehnder Interferometer (MZI)-like configuration as sketched in Fig. 3. This can be seen as 
follows. Assuming 3dB splitters and combiners, the transmission coefficients of the excited 
modes at the output are 

                                            ( ) / 2m reft t t± = ± ,    (32) 
where mt  is the transmission coefficient of output channel m of an (in principle) arbitrary 
photonic structure, placed in the signal branch of the MZI, reft   is the transmission coefficient  
of the reference branch, and the symbol ±  indicates the symmetric (+) and anti-symmetric 
( − ) modes of the output of the combined device. The latter mode may be non-guided. In the 



above the modal phase shifts, owing to transport through the connecting WGs, are assumed to 
be accounted for via reft . The attenuator in the reference branch is added to prevent 
unphysical blow-up (owing to division by small numbers) of the quantity defined below. 
Considering only the symmetric mode it now follows: 

                               
lnln 1 1

1 / 1 /
s sm

m
s sref m ref m

tt
S S

n nt t t t
+

+ ∗ ∗

∂∂
≡ = =

∂ ∂+ +
, (33) 

where we assumed that the material s is confined to the photonic structure. It is seen from Eq. 
(33) that by choosing, while scanning,  the complex phase of /ref mt t∗  equal to (for example) 

values around / 2π , and assuming that | |mt  is not too low, that sS+  is approximately a 

complex-phase shifted version of s
mS , converting partial group delay of the photonic structure 

into sensitivity of the combined MZI-like structure. The principle of the above conversion is 
well known and has been applied for years in MZI-based sensors (see for example [1]).  
     As an illustration to the above we consider a lossless micro-cavity coupled to a single 
mode WG as depicted in the inset of Fig. 4a. The corresponding transmission coefficient is 
given by [14] 

                                             0 0
1 ( ) / ; 1ik NL ik NLt e M M eτ τ− −= − ≡ − ,                                     (34) 

where τ is the (assumingly real) transfer coefficient of the coupler formed by micro-cavity and 
WG. The modal index of WG and of the WG forming the micro-cavity is N and L is the 
length of one cavity roundtrip. From Eq. (34) it follows that 2

1 1| | 1T t≡ =  and, assuming for 
simplicity that there is no WG dispersion (i.e., / 0N ω∂ ∂ = ), the following equality holds for 
the group delay 

   ( ) ( )2 2
,1 1 1 / 1 / | |g it t NL c Mτ ω τ∗= ∂ ∂ = − .   (35) 

Before discussing the conversion of group delay into sensitivity we will check the validity of 
Eq. (21) for this device. It is noted that the right hand side of the above expression is the 
product of the inverse of the group velocity of considered (dispersionless) WG (N/c), the 
round trip length L and ( ) ( )2 2 2| | 1 / | |A Mτ= − , with A the ratio of the  modal amplitude in 

the cavity and that in the input WG, according to 21 /A Mτ= − . Rewriting Eq. (24) into  

 1

cross section
/g inv Dd P N cτ− = =∫       (36) 

and substituting the second equality above into Eq. (35) it is now seen that Eq. (21) holds for 
the considered device as  

( ) ( )2 2
1 ,1 cavity

1 / | |g inT NL c M Dd Pτ τ τ= − = ∫ .    (37) 

     In Fig. (4a) we have plotted the quantity 1
sS  defined by Eq. (30), assuming practical values 

for the micro-cavity being / 0.1sN n∂ ∂ = , N=1.5 and 100 mL μ= , for a certain wavelength 
range, as derived from Eq. (34) and given by: 

                                         ( )2 2
1 00.1 1 / | |sS ik L Mτ= − − .                                                        (38) 
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Fig. 4. Real and imaginary parts of the quantities 1

sS  (a) and sS+  (b) versus excitation wavelength. The insets show 
the considered structural lay-outs.   

The quantity 1
sS  for the considered device is purely imaginary corresponding to zero 

sensitivity. Figure (4b) shows a plot of the quantity sS+  defined by Eq. (33), where we have 
assumed that the WGs for the MZI are identical to that of the micro-cavity (but insensitive) 
and we assumed 0 1exp( ) / 2reft ik NL= − , with 1 200 nmL = . The choices of both attenuation 

(leading to | | 2 / 2reft = ) and the phase of the reference branch signal are a bit arbitrary. As 
we found, any value for 1L  would lead to the desired conversion (as may be seen with Eq. 
(33)) as around resonances the phase of 1t  varies  as a function of the wavelength so that for 

any value of 1L  the real part of sS+  will be comparable in magnitude to the imaginary part of 

1
sS . From Fig. 4 it is indeed seen that the conversion is considerably and that the real part of 
sS+  is of the order of magnitude of the imaginary part of 1

sS . 
      Considering the above conversion from partial group delay to sensitivity and also using Eq. 

(17) the following can be concluded: If in the material to be sensed (s) of a certain photonic 

structure the ratio of time-averaged energy and input power is high (corresponding to a large 

partial group delay), an output channel (m) may be selected for which ,
s

m g mT τ  is large which 

may be converted into a large sensitivity. It is noted that the presented theory does not allow 

us to state that a large energy in the sensed material relative to the input power is always a 

necessary condition for a high sensitivity although one might expect such by intuition.  

6. Conclusions 
The relevance of a definition for sensitivity in refractometric sensing on the basis of the 
relative change of the transmittance divided by the change of the probed refractive index has 
been discussed. It is argued that the above definition, with a sensitivity which is directly 
related to the limit of detection, is more adequate than one based on spectral shift per 
refractive index unit. The latter definition may lead to a large overestimation of the sensing 
performance as is shown via two examples.  



     A relation has been derived for non-absorbing structures showing the equality of the 
weighted (by the transmittance) group delays, summed over the output channels, and the ratio 
of the total optical energy and the input power. A nearly equivalent equality holds if partial 
group delays and partial energy are considered, where partial refers to a sample material of the 
structure. Next it is shown that partial group delay and sensitivity of a certain photonic 
structure can be approximately converted into each other. Combing the above findings it 
follows that a large energy density in the probed material relative to the input power enables 
the construction of a highly sensitive device.  
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