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1 Introduction

Three-dimensional optical channel waveguides are basic ogonents of integrated optical devices
such as directional couplers, wavelength lters, phase sfiiers, and optical switches. The successful
design of these devices requires an accurate estimation dig¢ modal eld pro les and propagation
constants. Over already some decades several classes of hoets for the analysis of dielectric
optical waveguides were developed: among these are techogps of more numerical character, like
Finite Element and Finite Di erence approximations, the Met hod of Lines, and Integral Equations
Methods, but also more analytical approaches like Film ModeMatching (FMM) and the E ective
Index Method (EIM). Detailed overviews of these techniquescan be found in [1,/2/[3].

In the present paper we propose an extension of the scalar medsolver [4] to vectorial problems.
Our method is based on individual expansions of each mode pile component into a set of a priori
de ned functions of one coordinate axis (vertical), here, eld components of some slab waveguide
mode. The expansion is global, meaning that the same basis ffigtions are used at any point on
the horizontal axis. The unknown expansion coe cients { in our case functions, de ned on the
horizontal axis { are found by means of variational methods B, [6].

The present method can be viewed as some bridge between two pdar approaches, namely
the FMM on the one hand and the EIM on the other. In the standard EIM the 2D problem of
nding modes of the waveguide is reduced to consecutive salg two 1D problems: at rst, the 1D
modes, and their propagation constants, of the constitutirg slab waveguides are found, and then
their propagation constants are used to de ne e ective refrective indices of a reduced 1D problem.
In general this is a very quick and easy approach for a rough @émation of mode parameters.
However, in case one of the constituting slabs doesn't suppba guided mode (for example, some
substrate material with air on top) it is impossible to uniqu ely de ne the e ective refractive index
in that particular region of the reduced problem. Should it be the refractive index of the cladding,



refractive index of the air, or something in between? The regiction of the present approach to
one-term expansions will answer this question.

The validity of the method was checked on several structuresincluding waveguides with rectan-
gular and non-rectangular piecewise-constant refractivendex distributions, and a di used waveg-
uide. Comparison shows that the present method is a more coistent and accurate alternative to
the standard EIM and also can be pushed to its limits and useddr rigorous computations.

The paper is organized as follows. Irfi_seciion]2 the problem ohding vectorial modes of the
dielectric waveguides is stated, then some properties ofah modes and the modal eld ansatz are
described in section§B an@l4. The equations for the coe cienfunctions are derived in[secfion 5.
Section[® outlines the numerical solution methods. The relfon of the present method to the EIM
and FMM is explained in more detail in sections[T and8. Then inisection 9 numerical results
for several waveguide con gurations are presented. Finayl some concluding remarks are made in
[secfion 10.

2 Variational form of the vectorial mode problem

Consider a z-invariant dielectric isotropic waveguide de ned on its cross-section by a refractive
index n(x;y) or relative dielectric permittivity "(x;y) = n?(x;y) distribution. Figure Tishows two
examples.

XA (a)
A (b) Figure 1: Examples for 3D dielectric waveguides de ned on their
7 ~ cross-section by permittivity distribution  "(x;y). The structures are
y | _\_ invariant along the z-axis. (a) box-shaped hollow-core waveguide,
= a concept from [7], the subject of section [3, (b) a standard rib
g(x,y) g(x,y) Y waveguide, investigated in section [32.

The propagation of monochromatic light, given by the electic E and magnetic H components of
the optical eld, with propagation constant  and frequency! ,

E(cy;izit) = E(cy)e 2 Hyizi = Higy)e T2 ', (1)
is governed by the Maxwell equations for the mode pro le compnentsE and H
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vacuum permittivity "o, vacuum permeability o, relative permittivity "(x;y) = n?(x;y). Here and
further in this paper it is assumed that the relative permealility is equal to 1, as is the case for
most materials at optical frequencies.

We will work with a variational formulation of the Maxwell eq uations. Solutions (; E;H) of
the equations () correspond to stationary points E€;H) of the functional [5]

" ohE;"Ei + 1 ohH;Hi +i hE;CHi  itH;CEi_

F(E;H) = - - ; 4

(E;H) hE;:RHi h H;REi ()

with propagation constant = F(E;H) ggual to the value of the functional at the stationary
point. The inner product used ishPA;Bi = A B dxdy. The natural interface conditions are the

continuity of all tangential eld components across the interfaces.



3 Slab modes

In this section we will consider modes of slab waveguides, vich we will use in the next section as
building blocks to construct approximations of the modes ofwaveguides with arbitrary 2D cross-

sections. Furthermore, we introduce rotations of the slab nodes; these rotations will be needed to
provide a physical motivation for the particular form of the approximations that we will employ.

(L’ " (x)

L
Yz
€,(x) Figure 2: A slab waveguide with permittivity distrioution " (x) and principal component
Ey of a corresponding TE slab mode (3).

A one dimensional TE mode, propagating in thez-direction with propagation constant . _,
of the slab waveguide, given by the permittivity distributi on " (x) (Figure B) can be represented as

Ezﬁiﬁz (xy;z) = onéx); Eyo(;x); H9(X) e ! e (5)
The principal electric component Ev satis es the equation
B0 P k) B = 2L B (6)
with vacuum wavenumberk =2 = . The remaining two nonzero components of the mode pro le
can be derived directly from Ev:
L e ™

The slab waveguide (Figure[2) is by de nition invariant in th e (y; z)-plane. So if a modal solution
of Maxwell equations propagating in the z-direction will be rotated in the (y; z)-plane by an angle

(Figure B), it will still remain a modal solution of the Maxwe Il equations, but now propagating
in the direction (y;z) =( sin ;cos ):

e - . E . E ; . .
Ex; Ey, E; (ny,z) — HO, :|(X) CO.S ; Hy(X) Sin e I rie ( sin y +cos Z):
Hx;Hy;H; x(x); z(x)sin ; z(X) cos

8
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Figure 3. A slab TE (TM) mode propagating in the z-direction with propa-

gation constant e vy is rotated around the x-axis by an angle . The ro-
tated mode propagates with the same propagation constant, but in the direction
(y;z)=( sin; cos ).
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Similarly a 1D TM slab mode, propagating in the z-direction with propagation constant .
Ex;EyiEz .. v () 0 ®2(x) iz,
Hx;Hy: H; (xy;z) = 0; fy(x); 0 e e ®)

will still be a solution of the Maxwell equations after a rotation around the x-axis (Figure [3)

Ex(X); Ez(X)Sin; EZ(X)COS e i Firm

Ex;Ey;Ez

v o) = ( siny +cos z).
Hx;Hy;H; (xy:2) 0; Hy(x) cos ; Hy (x) sin :

(10)



The principal magnetic component v satis es the equation

1 Hy 0 ° 2 H 2 1 4
X + ks Y(X)= ~& Y(X): 11
"r(X)( (X)) x) = f %) (%) (11)
Again the remaining two nonzero components of the mode pro & can be derived directly from Hv:
E — riTm H . E — i H 0,
“(X) = ——M— "y(x); X)) = o y(x) 12
0= s 0 0= ey W (12)

4 Modal eld ansatz

We now return to the vectorial modes of the 3D waveguides, asni section[2. Each eld component
F 2fEx;Ey;E;; Hy; Hy;H,g is represented individually as a superposition oimg a priori known
functions XjF (x), de ned on one coordinate axis, times some unknown coe ciat-function YjF (y),

de ned on the other axis:
F

Fooy)= X 00Y" (y): (13)
j=1
For the functions X we will take components of slab modes from some referencecd(s). Further
in the paper two types of the expansion will be relevant, one wich introduces 5 unknown functions
Y per slab mode, and another one, which introduces only 3. Theswill be called ve component
approximation (VEIM5) and three component approximation ( VEIM3), respectively.
Ey  Hx

In case of VEIMb5, the TE basis mode [5) numberj with mode pro le components R
sz contributes to the expansion of componentsEy, E,, Hy, Hy and H, with the form JEVYJ-EV,

jEijEZ, jHXYjHX, jHZYij and jHZYjHZ. Likewise, the TM basis mode [®) numberl with mode

pro le components IEV, IHX, ,HZ contributes to the expansion of componentsEy, Ey, E;, Hy and

H, with the form  ExyEx,  Ezyv  EzyEz o HyyHy o HyyH: 'sich that the complete expansion

looks like |

Ex;EyiE; ... _ P 0 SOV P OYEY)
HeiHyH,  9Y02) PR CON AN ) A GO NN () IR CONARI () ' (1
L P POOYE s PO 0OV EE)
27M 0 R COMARE ) I SN (%)

This expansion has the drawback that the functions making upsome of the components can
become linearly dependent; for example, the full set of IHy(x) components from TM modes form a
complete set; thus any jHZ(x) from a TE mode can be expressed in that complete set of funabns.
When using a limited number of modes in the expansion, no prolems result from this; however,
increasing the number of modes will at some point make the prolem ill-conditioned. Therefore,
we introduce a di erent expansion, which we call VEIM3, in which we omit contributions of some
modal components - making sure that each vector component i®nly represented by either TE
of TM slab mode components. So a TE basis modd5) numbgr with mode pro le components

JEV, jHX, jHZ contributes to the expansion of componentsEy, E, and Hy with the form JEVYJ-EV,
jEijEZ, [*Yfx. Likewise a TM basis mode [9) numberl with mode pro le components Y,

Mz contributes to the expansion of componentsEy, Hy and H, with the form  FxY,5x,

FVYIHV, lHyYIHZ, such that the complete expansion looks like
!

EGEVEe  (oyig = o OM M I YA (VRN
Hx;Hy Hz jete (YY) 0, 0 | (15)
L PoPeoTen o o
2TM 0 OO W) T 0Y ()



Note that in both expansions each contributing component F of a 1D mode is used to represent
the eld not only in the slab segment where it belongs, as in EM and FMM methods, but also
in the whole waveguide. So even with a single slab mode in botbxpansions, [T%) and [(Ib), it is
possible to construct an approximation of the eld in the whole structure. In section [ we will
study in detail properties of such one-mode-expansions.

The form of the expansion [I4) was inspired by the mode matchiig technigues that use the
physically motivated approach of employing rotated modes @), (L0) to locally expand the total
eld [8] 9]. In the present approach though, we attribute those parts of the slab mode components
that do not depend on x to the functions Y F, treating them as unknowns { but the x-dependence
of the y and z components is still the same. In the section§]7 anfll8 we will stdy the behavior of
these functionsYF.

What concerns the choice of the reference slice(s), it seentsat modal components from the
slice, where the maximum power is expected to be localized,ig the best results. Further in this
paper VEIM5 will be used with a few modes only for rough and e cient approximations, while
VEIM3 will be used with higher numbers of modes to obtain accuate, converged results. We do
not restrict to using modes from one reference slice only; webserve that adding mode(s) from
another slice can greatly improve accuracy for lower numbeof modes in the expansion. However,
care must be taken; the problem can become ill-conditionedfithe modes become nearly linear
dependent.

In the following all the slab mode components , which are used to expand a eld component
F of the complete waveguide, we will denote aX © (just like in eqn. (I3)).

5 Reduced problem

The next question is how to nd corresponding functionsY, such that the expansion [I3) represents
the true solution in the best possible way. For this purpose w apply variational restriction [2]
of the functional (). In short it can be outlined as follows. As it was already mentioned the
critical points of the functional (&), which satisfy some catinuity conditions, are solutions of the
Maxwell equations (2) and, vice versa, solutions of the Maxwll equations (2) are critical points of
the functional (4).

After insertion of the expansions [I4) or [I5%), variation of the functional (&) with respect to a
function Y F, a vector function made up of all functions Y 7, results in the following system of rst
order di erential equations for Y F with parameter

A1 B+ Agp(Y H2)0= A gy Hy
AoxY By + A22YHZ = A23YHX
Az Bz + Agp(Y )0+ AggY My =0
AarY Mo+ Agp(YE)0= Ay By
A5;|_YHy + A52YEZ = A53YEX
Ae1Y M2 + Ago(Y )0+ AgsY By = 0:

(16)

R
The elements of the matricesA include the overlap integrals (here: ha;hi = a bdx) of the
functions XjF (x), their derivatives, and the local permittivity distribut ion of the waveguide:

A(p;j) = !hXEX;"XjEXi Ap(p;j) =i hXEX;XjHZi A13(p;j) = hXEXinHyi
Aa(pii) = UG T Ana(pii) = TG (XS Ags(pii) = h XY X[
Asi(pif) = VIXEZ "X B2l Aga(pif) = IRXEZ X Agg(pif) =i X7 (™)
Aa(pii) =1 XECXP An(pii) = IXEOXED Ag(pij)= h XEoX i
Asi(pii) =1 WXp” i X™i Asp(p]) =i B (XF)E Asg(pij) = WXpY s X i
Aer(pi) = ! IXHE X Aga(pii) =i IXH X B Aea(pif) = i e (X))

(17)

Note that the permittivity appears only in A1, A1 and A 31, hence only these matrices arey-
dependent.



If the permittivity exhibits discontinuities along the y-direction, the functions
YEx and YHx; YEz and Y": (18)

are required to be continuous at the respective positions.

It turns out that by algebraic operations the system of rst order di erential equations (L&)
can be reduced to a system of second order di erential equatits for the vector functions Y Ex and
Y Hx only. Moreover, since the componentsE, and E,, Hy and H, are approximated by the same
functions in the representations [I4) and [I%), the matricesA satisfy the following equalities:

Aiz= iAp
Az1=A2; Azxx=i1Ajs; Aszz= Ax
: 19
A43 = 1A 42 ( )
As1= Asi; Ag2=1As3 Ag= Asy
and hence the system[{16) reduces to
Siu +(Soul+ Sgu)= 2S,u+  Sud (20)
. Y Ex(y) . . . . _
with u(y) = Y Hx (y) and (anti-)block-diagonal matrices S of the following form:
_ Aunn O
S1= 0 Apn
I
. 1 H
s,z 1A Asit AsAxiAn As 0 )
0 Az Azt ApAsiAsy Az |
L !
S = 0 . ADAAs Api+ ApAclAs, A
AuA Az Asi+ AsALlAs  “Ass 0
(21)
Across the vertical interfaces continuity of
u and Su®+ Szu (22)

is required.
As soon as the functionu, or in other words Y Ex and Y Hx, are known, the functions Y
corresponding to the four other components can be derived af®llows:

. 1 1
YE =i AL A Asi+ AsAL A TAs(YEN)+  Ap+ ApAclAsy “AYHx,

1 . 1
YE = ALlMA A+ AsA 2111A 22 AsgYEx i Ay + ApAlAs 1A 23(Y )G (23)
YHY = Agi+ AspA A T53Y Bx +i AglAsy Agi+ ApAglAs A231(YHX)0,
YHz = i A+ AspAL Az TAss(YEN)O+ A lAs Ap+ AnAgiAs, “AgYHx:

Note that substituting Equation (Z3) into the continuity co nditions (22) shows that (22) exactly
implies the continuity of the relevant electromagnetic conponents (18).

6 Method of solution

In general the system [20) can be solved by the Finite Elemenmethod [10,[11]. It relies on a spatial
discretization, i.e. divides the whole computational doman into a number of elements. On each
of these elements the unknown function is represented as a garposition of some basis functions.
The coe cients of the expansion are found using the weak formof eqn. (20). While this method is
very general, it quickly introduces a large number of unknowms.



However, due to common techniques of fabrication many wavagdes do not have a completely
arbitrary refractive index distribution, but rather one wh ich is piecewise constant along the hori-
zontal axis. The waveguide then can be split in several vertial slices, where the refractive index
does not change in the horizontal direction. In each of thesdayers the general solution of [2ZD)
can be written down analytically. Gluing them together across the vertical interfaces will give the
desired mode pro le.

Both of these methods can be applied to nd not only the fundanental, but also higher order
modes. In the following we will outline each of these methodé more detail.

6.1 Arbitrary refractive index distribution: Finite Eleme nt Method

In case of an arbitrary permittivity distribution "(x;y) (di used waveguide, waveguide with slanted
sidewalls) the matricesS depend ony, as their elements include overlap integrals with the permt-
tivity "(x;y). One of the ways to solve the di erential equation (20) is by using the Finite Element
Method.

By multiplying both sides of (20) from the left by some continuous test vector-function v and

integraéing over y one gets the weak fo&m of equation[{Z0): .

vl Siu+ (v%,u® dy + (vH%zu + vIszu® dy+ 2 vlS,udy=0: (24)

Then we expand the solutionu into a nite combination of the basis functions ij o

Xd X9
u(y) = aj " i (Y); (25)
i=1 j=1
with ng the dimension of the vectoru; ng the number of consecutive grid pointsy; into which the
y-axis has been divided, and

0 1
0
tiy) = %‘Aj (y) i" position (26)
0
with, for example, linear basis funcéions
3 0 Y<Yj 101y  Yj+1;
-,\j(y):§ )’,jy)’,lll Yi 1 Y<Yj; (27)
: y

YJ+1 . : . .
Vo v Vi Y SYis

As eqn. (24) should hold for an arbitrary continuous v, we choose it to be one of the basis

functions ' j - For i=1;::5;ngandj =1;:::;ng this results in the system of exactlyng ng linear
equations

( 5+ 8)a+ (Ss+ Ss)a+ ?8a=0; (28)

whereal = (aj)=(ai;: ;angali[@12; 1 @ng2ls i [A1ng 1205 @ngng) (the subscript jj here refers

to the j element of thei" subvector). Since for any square matrixM of dimension NgNg  NgNg

' lpmM' i = m(y) Mpi(y) ™ (29)

holds, the matrices S turn to be of the followinlg form
Si(pm;ij) = R "mSpi” dy;
Sa(pm;ij ) = R("m)Szpi (")°dly;
Sa(pmiij ) = H("m)%Sapi dy; (30)
Sa(pm;ij) = & "mSzpi"y dy;
éS(pm; )= "m S3pi(V\j )ody;

7



where the indicespm and ij have the same meaning as in the de nition of the vectora.

The solution of the quadratic eigenvalue problem [Z8) with as an eigenvalue can be found
by introducing an auxiliary vector b = a. (Z8) can then be transformed into the following linear
eigenvalue problem

a a

0 1 ~ .
8,5 8,+8) 8%%+% b ~ b - (31)

This is a quite straightforward, but expensive approach, asthe dimension of the transformed
problem is doubled in comparison to the original one. Other nore involved approaches to tackle
a quadratic eigenvalue problem can be found e.g. i [12]. Wepply standard general eigenvalue
solvers as embedded within the LAPACK [13] package. Speciaed solvers could be employed,
provided that an initial guess for the propagation constant, or a range of possible eigenvalues, are
available for the problem at hand. On the other hand, there ae situations where all the propagation
constants and corresponding functionsu need to be found together, e.g. if one wants to expand a
3D eld in terms of vectorial modes of some channel waveguideas required for the implementation
of transparent boundary conditions [14].

While the entire 2D problem could also be solved directly by neans of a Finite Element method,
the number of degrees of freedom in such cases would be muctgher than when solving the 1D
equations (20) using the Finite Element Method; instead of laving to use a triangulation of the
entire 2D domain, only 1D nite elements are needed; furthemore, the number of degrees of
freedom on each node is equal to the number of modes in the expsion, which is typically a small
number.

6.2 Piecewise constant refractive index distribution

If a waveguide has a piecewise constant rectangular refraiee index pro le, it can be divided by
vertical lines into slices with constant refractive index distribution along the y-direction. In each
of these slices the matricesS do not depend ony. Then (Z0) can be rewritten in a more familiar
manner: Inside each of the slicesr should satisfy a system of second order di erential equatios
with constant coe cients S and a parameter 2

Siu + S,u%= 2s,u; (32)

together with the continuity conditions (ZZ). Moreover the matrices S; and S, are block-diagonal
in such a way that the equations for the functionsY Ex and Y "x decouple inside each of the slices;
coupling occurs only across the vertical interfaces.

Inside each slice a particular solution of the system[(32) aa be readily written as

u=ceYp (33)

with some constantsc; and a vector p. By substituting (83) into (32) we nd a generalized
eigenvalue problem with 2= 2 2 as an eigenvalue:

Sip = *Syp: (34)
So inside each of the slices with uniform permittivity along the y-axis the function u can be
represented as 0 q q 1
X 2 2 2 2
u= Qe Yige YA p, (35)

i
with eigenvalues ; and corresponding eigenvectorp; from (B4).

By matching the solutions of the each individual slab acrosshe vertical interfaces using [22)
and looking only for exponentially decaying solutions fory ! 1 |, one can obtain an eigenvalue
problem

M( )c=0: (36)

8



The vector ¢ consists of all unknown coe cients c;; and ¢y from the representations ofu (B5) on
all individual slices. The matrix M depends on in a non-linear, even non-polynomial way. One
of the strategies to tackle this is at rst to specify a range d admissible values 2 [l1;15], where
solutions are sought. As we are looking only for propagating modes, wit decaying eld (B5) at
y! 1 ,I1should be not smaller than the biggest eigenvalue; of [34) in the left-most and the
right-most slabs. At the same time we require that there exiss at least one oscillating function in
at least one vertical slab. Sol, should be smaller than the biggest eigenvalue; of ([34) of all the
constituting slabs, except the left- and the right-most ones. Once this interval is at hand, we scan
through it looking for a  such that the matrix M (' ) has at least one zero eigenvalue. Obviously,
to nd a non-trivial solution with certain accuracy require s some iterations. Moreover a large step
size might lead to missing some roots while scanning the intgal.

Once a nontrivial solution , ¢ of (38) is at hand, u can be reconstructed using[(3b). And then
all eld components can be obtained according to expressian (23) together with (I4) or ([I5).

7 Relation with the E ective Index Method

In the following section we are going to show what happens ifmly a single, TE or TM, slab mode
is taken into account in VEIM5 (I4). Using the variational re asoning we will rigorously derive an
analog to the E ective Index method.

7.1 TE polarization

Let us take only one TE slab mode with propagation constant , from a reference slice r with
permittivity distribution ".(x), and use it to represent the vectorial eld pro le of the com plete
waveguide as in eqn.[[I4). Due to the fact thatX Bx 0, according to (20) the unknown function
Y Hx satis es the eqn.

: 0

AnY ™+ Asp(Aa + AzAciAsy) TAgs(Y )" = 37)

2 i A(A + ApAciAsy) 1Az YHx:

After some manipulations, using the relations between the mdal components Ev, Hx and
Hz of the slab mode the above relation can be rewritten as follow

1 0 1
u_(YHX)O + kZYHx — 2"_YHX (38)
e e
. 2 hEiCy) ") B
" _ OGy) ey ,
This looks exactly as a TM mode equation, similar to the standard E ective Index Method.
In the reference slice one has = ";, and the e ective permittivity ", is equal to the squared

e ective index of the mode of the reference slice ?=k?. In other slices this squared e ective index
is modi ed by the di erence between the local permittivity an d that of the reference slice, weighted
by the local intensity of the fundamental component of the rderence mode pro le. Hence, on the
contrary to the EIM, even in slices where no guided mode existthe e ective permittivity can still
be rigorously de ned.

Now it is instructive to see how the mode pro le adjusts both in the reference slabs and else-
where. Inside a slice with constant permittivity "¢ , egn. (38) permits solutions of the form

Yix=c Y +¢ce !V (40)
for arbitrary constants ¢, and ¢ and with

2+ P= ke (41)



With the abbreviation 2= k2", from (23) it follows that

YHZ:r_2C+eiy +Ceiy :

YEy = yHz.
: ; (42)
YE= T cdY cel!Y
Y= vEz
By introducing an angle such that cos = = , one can write
YEx;YEy; YE: _ rj siny O cos; sin
YHx;YHy;YHZ (Y)— Ck —€ = . sin - cos + (43)
1o teisiny O cos;  sin
= ; sin; cos

If we use the principal square roots of 2 and 2 for and , and the principal inverse cosine
for eq.[43 can be interpreted as follows. In the slice where the ference slab mode lives = |,
and we nd that functions Y act as a rotation of the slab mode, such that the projection ofthe
propagation constant of this mode onto the z-axis will match the global propagation constant
In other slices, in addition to the rotation of the y and z components of the slab mode, thex
component is scaled by= .

7.2 TM polarization

Analogously, the egn. [20) can be rewritten for a single TM male, with a eld template as in ([4).
We now have X "x 0 in egn. (Z0) and using the properties of the TM slab mode, theoriginal
equation for the unknown function Y Ex,

. 1 0
AnYE 4+ AL Asp+ AspALtAn  TAsy(YEX)O =

. (44)
2 A1 Asi+ AspAytAzn  ‘Asy YEX
can be rewritten as L 0 1
—(YE)O 4 kB = 2 yEx, (45)
le le
with
()= P00 B b By B h B COay) () e
le T k2h Ez-"(y- Ezj Hy- 1  Hyj Ez "(y- = ’
keh Ez:"(x;y) EBzi  h iy i h Ez;"(x;y) Ezi (46)

h B (xiy) i
h BEx:"(x) Exi’

This appears to be neither a standard TE nor a TM mode equation but something in between,
with the local refractive index distribution appearing bot h in the terms with and without derivative.
In the reference slice with" = ";, the e ective permittivity "1 is equal to the squared e ective
index r2=k2 of the mode of the reference slice and, = 1. Contrary to the EIM, even in slices
where no guided mode exists quantities that act like e ectiveindices can still be rigorously de ned.

What concerns the mode pro le, in intervals along the y-axis with constant ", and ", local
solutions of eqn. [4%) are of the form

"a(y) =

YEx=c dY +c el (47)

with
24 2=y (48)
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Let us denote the right hand side of eqn.[[dll) as 2 = k?"1c "> and "3(y) = % then

according to eqn. [Z3) one obtains

yHz = r220+eiy celY .
yEy = EYHZ’
ll3 (49)
YHy: r22C+e|y+C€|y;
vE: = Ly
II3
By introducing an angle such that cos = = , one can write
YEx;YEy;YEz (y) _ C+ I‘"2 e| S|n y - r"2; u3lsin ’ " 31COS
Y Hx:yHy-yH: 0; COS ; sin (50)
n . . — LU " l 1 . n 1
+c 2o i siny = r2s "gTSIn; T 37C0S
0; CoS ; sin
In the reference slice = | and we nd that the functions Y also in this case act as a rotation

of the slab mode. In all other slices, while they- and z-components of the magnetic eld are just
rotated by the angle , the electric y and z components are not only rotated, but also scaled by
"5 7. In addition to this the x-component is scaled by= ,"».

8 Relation with the Film Mode Matching Method

As we could see in the previous section if only one, TE or TM, slb mode is used to expand the
total eld pro le using the 5 component expansion ([L4), the variational procedure leads to functions
Y that act as a rotation. Then the eld representation inside the slice where the slab mode lives
replicates the eld ansatz of the FMM (cf. Becfion 4). In the following we look at the the case when
multiple TE and TM slab modes appear in the 5 component expan®n (I4).

Let us rewrite the second, third, fth and sixth equations of (L) as

e (Y YR+ I (Yo + Y5a) = AxlAss( Y Grev i
e (Y YR+ I (Yo + Y ) = AglAss(Gm Yy i(YE))
e (Y2 + YT+ 1mm (YS,  You) = AtAs(Gre Yy i(YH)9
e (YR + YT I (YRy  Yru)= AsfAss( YE G YF)

(51)

with functions Y § corresponding to a vector of all the functionsY related to modal component
of polarization b, used to expand componenta of the total eld. Gy is a diagonal matrix with
propagation constants ;; of the slab modes of polarizationb sitting on the diagonal. Matrices

ITE - é‘nTE NTe : ITM - ](?nTE ntm . (52)
Ntm  NTE Ntv  Ntm
have been introduced to increase the readability of the equions. Here 14 and O4 denote corre-
spondingly the unity- and zero-matrix of a dimension d, and symbolsntg and nty denote the
number of slab modes of respectively TE and TM polarization ncluded in the expansion [14).
Obviously, functions Y that satisfy

Y= YIS Yo = Y5
E .
Y eV S Si(YES (53)
Yrg . Y1 Y = Yo
GTEYTEy:i(YHX)O; YE>‘:G'|'|\/|Y-|I§|\Z/I
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are solutions of [51). Using these relations together with he rst and the fourth equations of ([8)
result in

(Y Ex)00+(GTM )ZY Ex 2Y Ex

(Y F)%% (Grg )2Y Fx
According to eqgns. [51) and [54) all the functionsY decouple inside the slice where the slab

modes belongs to. So we can solve these equations for all thencponents of Y Ex and Y Hx
separately. Solutions of [54) have the form

2y Hx - (54)

Yio=cged Yec el iy (59)

with
2 2_ 2.
+ J -_ I’,J .
Other components can be derived from[(5ll) as

(56)

Ex.vEy.vE: . _ _ o
YiH :YjH 1YjH (y) = c g rjsinjy 2 cos j; sin j
Ax .oy tlYy oy Hz ’ ’ sin ’ COoS i
KA AR (57)
+c e | risinjy 0, cosj; sin ,
' 1, sin j;  cos |
where cosj = = ;.

Hence the functionsY; corresponding to TE slab mode number rotate the original slab mode
around the x-axis such that the projection of its propagation constant ,; onto the direction of
propagation z will be precisely the propagation constant of the mode of the complete waveguide
structure. The same is true for TM slab modes.

We showed that the eld ansatz of rotated slab modes, as usedokally in the Film Mode
Matching method [9, [8] can be found also by the present appraan where it appears to be optimal.
While in itself it might seem rather pointless to reinvent th e method, the idea behind the present
technique might be used in deriving some sort of analogue ofhe FMM for full 3D scattering
problems, in which the structure varies in all 3 directions [L4].

9 Numerical results

We will illustrate the method with four examples. The rsttw o deal with waveguides with piecewise
constant rectangular refractive index distribution. The t hird example is a waveguide with slanted
sidewall and the fourth is an indi used waveguide. We will usethe acronym VEIM (variational

e ective index method) for results of the technique as introduced in sectiond 2 £B.

9.1 Box-shaped waveguide

g = 3.17

Ny, = 1.4456

<Y

e ) 0.3pum

0.15um

Figure 4: Structure of the Box-Shaped Waveguide. The vertical
A=1.55um extents of the computational window range from  2:5m to 2:5m .

Consider the box-shaped waveguide of Figurgl4, originatingrom [7]. It can be divided into
ve vertical slices with three distinct cross-sections (Figure[3, left). We take slab modes from the
side walls of the box (Figure[®, middle) to approximate the malal eld in the entire cross-section
(Figure B, right). The waveguide will be analyzed with both 3 (Equation (I5) ) and 5 (Equation (LZ)

12



XA XA X4

[l
Y%

<y
<y

Figure 5: Subdivision of the waveg-
uide into slices. Slab modes of the side
walls are used to approximate the eld
of the mode everywhere.

) component approximations, denoted by VEIM3,., andVEIM5 5., where a and b are the number
of TE and TM slab modes taken into account.

In Figure @ VEIMS 1.9 approximation of the vectorial mode pro le of the fundamental TE-like
mode is shown. In this case Ev is multiplied by Y&y and YEz to get E, and E; respectively; Hx is
multiplied by YHx to get Hy; and Mz is multiplied by Y"y and YH: to get Hy and H, respectively.
The gure contains plots of all contributing functions. Con sistent with the observation in sec.[ 71,
we see thatY®y = YHz and YEz = YHy, Note that, contrary to the EIM, the eld pro le can
still be visualized even when no local guided slab mode exist

1. 1.5 1.5 15 1.
1} x5 15 { 125 K 11 j 1)1
05 05 05 05 05
F F = F
-0.5 05 05 -05 -0.5
= =] =] =] =]
(a)
-1.5 -1.5 -1.5 -1.5 -1.5

Y& Y&, ] YE, YH || M, Y, ”_’U
— | —
(b) A 0 1 A 0 1 1 1 Z 0 A 0 1 1 0 1
y (um) y (um) y (um) y (um) y (um) y (um)
1
=3
N [] 0 = O
-1
-1 0o 1 -1 0o 1 -1 0 1 -1 0 1 =i 0o 1 = 0 1
(c) y (um) y (um) y (um) y (um) y (um) y (um)

Figure 6: Square waveguide: (a) Functions in expansion VEIMS5 1.o; (b) Functions Y in expansion VEIM5 1.0; (c)
Vectorial eld prole VEIM5 1.

Next, Figure [7] gives an impression of the "converged" eld po le obtained using VEIM3 30:30.
The slab mode basis has been discretized by Dirichlet boundg conditions on the boundaries of
the vertical computational window as given in Figure [4. Comparison with Figure 6 shows that
even with a single mode in the representation, the main feattes of the true eld pro le are already
visible. So the present method with one mode in the expansiogan very well serve as a quick tool
for qualitative analysis of the waveguide structures, whik also being able to quantitatively analyze
the waveguide by using more modes in the expansion.

Figure B shows the propagation constant of the fundamental mdes of the waveguide versus
the number m of TE and TM modes in the expansion VEIM3,.,, for both the present method
and a commercial FMM solver [15]. Both methods converge to te same value with comparable
convergence speed.
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So O [ ] L] [] L]

-1 0 1 = 0 1 -1 0 1 -1 0 1 = 0 1 = 0 1
y (nm) y (um) y (um) y (um) y (um) y (nm)

Figure 7: "Converged" (VEIM3 30:30) Vvectorial eld pro les of the fundamental TE-like mode.

1.5265

+ VEIM3 - Present Method

m,m

o FMM - FieldDesigner, Phoenix Software [2]

+0

1.526

o
1.5255

B/k

1.525 S

1.5245 o
PP+ 20009

, , . ‘ , Figure 8: Convergence of the e ective index of the fundamen-
10 1 20 2 %0 % 40 tal TE-like mode of the box-shaped waveguide Figure Bl

1.524

n=3.44

3um n=34

A =
N

<y

Figure 9: Structure of the Rib Waveguide. Vertical extents of
A=1.15pum the computational window are [ 2;2]m .

9.2 Rectangular rib waveguide

In this section we consider the rib structure from Figure[9, which is used as a benchmark waveguide
in [2,[16,[174]. The structure supports a fundamental TE andTM mode for all etch depths h in the
range we look in, which is [0.2, 1]. The modes are strongly pafized, and thus it may be expected
that an expansion using only TE or only TM modes (similar to a sesmi-vectorial calculation) will
give good results.

At etch depths greater than 0:5m guided modes do not exist outside the central slice, so the
EIM fails to uniquely determine the e ective refractive inde x of those regions. We analyze this
structure with both 3- (I5) and 5-component (I4) approximations. In the following gures we
will refer to them as VEIM3 gp.c.q and VEIMS 4,.c.4 correspondingly. The subscript letters stand
for number of slab modes used in the current approximation:a { number of TE modes from the
central slice, b { number of TE modes from the outer slice, ¢ { number of TM modes from the
central slice, d { number of TM modes from the outer slice.

The slab modes are calculated using Dirichlet boundary conitions on the upper and lower
computational domain boundaries. Because of this, the outeslice mode is still de ned when the
guided mode of that slice goes below cut-o .

Figure [I0 and Figure[11 show plots of the TE and TM e ective indices correspondingly using
these di erent expansions versus the etch depth. The gures Bo show the corresponding EIM
results, and, as reference, FMM results obtained by the comercial mode solver[[15].

Comparing the results of our method with only one TE (VEIM5 1.0.0.0) or TM (VEIM5 ¢:0:1:0)
mode of the central slice in the expansion[{I4) to the EIM resiis, shows that for larger etch depths,
our results are much closer to the reference results - espatly after the outer slice has gone below
cut-o and the EIM uses the substrate refractive index as (canstant) outer slice e ective index.

Adding one outer slice mode to the VEIM expansion greatly impoves its accuracy, especially
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Figure 10: Convergence of the e ective index ( =k ) of the fundamental TE mode of the rib waveguide.
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Figure 11: Convergence of the e ective index ( =k ) of the fundamental TM mode of the rib waveguide.

if it is a guided slab mode; the VEIM5;.1.0.0 curves are much closer to the reference results than
the VEIMS5 1.0.0.0 curves, especially at etch depths below:G m .

Taking ve inner and one outer slice mode VEIM5s.1.0.0 moves the results closer to the reference
curve, while fteen inner and one outer slice modes VEIM3s:1.0.0 yield results that almost coincide
with the reference. Note that these results use only TE or ony TM modes in the 5-component
expansion [14), i.e. the resulting elds are semi-vectori§ apparently a semivectorial approximation
is su cient for an accurate estimation of the e ective indice s of this structure.

The present method when using just one central slice TE and TMmode simultaneously with
the three-component-per-mode approximation VEIM3;.0.1.0 (I5) yields results that are quite far
from the reference data. Moving to the ve-component-per-node approximation VEIM51.0.1.0 (14),
on the other hand, gives much better results. Moreover, addig outer slice TE and TM modes
VEIMS 1.1.1.1 greatly improves the estimation of propagation constant fa both, TE and TM, po-
larizations.

9.3 Waveguide with non-rectangular piecewise constant cro ss-section

The waveguide cross-section of Figure_12 is part of a polardion rotator in InP/InGaAsP, proposed
in [18]. Due to its slanted sidewall, the modes of this structire are highly hybrid.

Because of the slanted sidewall, the nite element scheme isore suitable to calculate the
modes of this structure; the semi-analytical method requies a rather large number of slices, while
the nite elements automatically take the slant into account.

Figure[I3 shows the convergence of the e ective index of the idamental mode of the waveguide
versus the number of modes in the 3-component expansion VEIBL, ([@I5), with a and b being
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Figure 12: Structure of polarization converter from [18]] The
computational window in the calculations is ( x;y) 2 [ 2;2:5]
[ 2;3:5]m 2; 50 elements are used in the nite element scheme.

Figure 13: Convergence of the e ective index of the funda-
mental mode of the polarization converter.

numbers of TE and TM slab modes from the central ¢ 2 (0;1:15) m ) slab. It also shows the
convergence of the commercial FMM mode solvei [15], in whiclthe structure is subdivided into

50 slices. Remarkably, starting from just 2 TE and TM modes inthe 3-component expansion[{(1b)
VEIM3 2.», the e ective index is stable and close to the converged valuef the FMM solver; 320
modes in the FMM solver lead to an e ective index of 3.2225, whe with just 7 TE and TM modes

the current method predicts already an e ective index of 3.223. The eld pro les also converge
rapidly; Figure [L4] shows the vectorial elds for (a) one (VEIM31.1), (b) two (VEIM3 2.2), and (c)

seven (VEIM3;.7) TE and TM modes in the expansion (13).

Figure 14: Vectorial eld prole of the fundamental mode of the polariz ation converter. (a) VEIM3 1.1, (b)
VEIM3 2.5, (¢) VEIM3 7.7.
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9.4 Indiused waveguide

To show the exibility of the present method we apply it to a di used waveguide [19] with a
refractive index distribution given by

N2+ n2(1:05% 1)exp( x2=16)exp( y2=4); if x> O;

n2;, if x< 0 (58)

n?(x;y) =
with n2=2:1,n2=1:0and =1:3 m. Similar to the slanted sidewall waveguide described aba;
the nite element implementation of the presented method is the more suitable, since it takes
into account the nonuniform distribution in the y-directio n of the refractive index automatically.
Vertically, the structure is subdivided into 7 layers; horizontally, 20 nite elements are used. The
computational window used in the calculations is de ned as k;y) 2 [ 1,8] [ 6;6]m 2.

Figure 15: Convergence of the e ective index of the funda-
mental mode of the di used waveguide.

Figure 15 shows the convergence of the e ective index of the idamental mode of the indif-
fused waveguide versus the number of modes in the 3- (VEIM3,) and 5-component (VEIM5;.,)
approximations, with a and b being numbers of TE and TM slab modes of the central y =0 m )
slab. The results are compared to the rigorous Finite Di ererce simulation (with 129 129 grid
points) [15]. Since the fundamental mode is strongly poladed, the semi-vectorial approximation
appears to converge much faster.

Figure 16: Field pro les of the dominant electric
component Ey of the fundamental TE mode: left {
VEIM3 1:1, right { VEIM3 15;15 -

On Figure 16 eld pro les of the dominant electric component Ey of the fundamental TE mode
are shown. The e ective indexNg = = 2 of the fundamental mode on the left picture is 14965
and on the right { 1:48802, which compares well with the Finite Di erence simulaion { 1:48797.

10 Concluding remarks

A variational method for the fully vectorial analysis of arbitrary isotropic dielectric waveguides was
developed. Similar to the scalar approach [4] this method gies rather accurate estimates of the
propagation constants, sometimes even with only a few term# the expansion.

When applying the present method with only one slab mode in tte expansion of the modal eld
of the complete waveguide, this mode is transformed in all derent slices to t the true solution
there the best. Together with the shape transformation, thee ective index of this mode is uniquely
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transformed. Additionally, the expression for the transformed propagation constant is quite simple
and is certainly not more complicated, than the calculation of a slab mode. In this way the present
procedure turns out to be a simple and still a more rigorous wg to obtain a rst intuitive guess
for the propagation constant and eld pro le, than the stand ard E ective Index Method.

It turns out that in case a TE mode is used in the expansion, thereduced equation appears to
be a TM mode equation. At the same time when a TM mode is used, th reduced equation appears
to be neither TE, nor TM mode equation, but something in between, with the e ective refractive
indices appearing both under the derivative sign and in the ight part of the equation.

While in the Film Mode Matching method, rotated modes of each slice are used to locally
expand the eld, VEIM uses only one set of modes everywhere. ¥ showed that in the reference
slice, where the 1D modes are calculated, VEIM predicts exdly the same rotations as the Film
Mode Matching method uses. In the reference slice the total eld pro le is a superposition of these
rotated 1D TE and TM modes; in other slices, however, the compnents of all the 1D modes mix.

Of course the guestion remains - would some other combinatioof slab mode components lead
to faster convergence? For example, one could imagine thahia certain case a superposition of
e.g. explicitly selected pro les of speci c slices would lad to similar results as if one would take
functions related to more, let's say, ve but consecutive males - from the fundamental to the fourth
order. However, adding eld pro les from di erent slices may lead to a (near) linear dependency
of functions X, and result in non-unique functions Y. Obviously, the safe choice is to use in the
approximation of a component of the total eld only pro les f rom a single slice. Nevertheless, when
only a few modal components are used, it may, as our calculains show, be bene cial to use one
or two modes from other slice(s).

Similar ideas can be applied to optical scattering problemsn 2D and 3D. A preliminary account
of corresponding simulations has been given in [20], [14].
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