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1 Introduction

Three-dimensional optical channel waveguides are basic components of integrated optical devices
such as directional couplers, wavelength �lters, phase shifters, and optical switches. The successful
design of these devices requires an accurate estimation of the modal �eld pro�les and propagation
constants. Over already some decades several classes of methods for the analysis of dielectric
optical waveguides were developed: among these are techniques of more numerical character, like
Finite Element and Finite Di�erence approximations, the Met hod of Lines, and Integral Equations
Methods, but also more analytical approaches like Film ModeMatching (FMM) and the E�ective
Index Method (EIM). Detailed overviews of these techniquescan be found in [1, 2, 3].

In the present paper we propose an extension of the scalar mode solver [4] to vectorial problems.
Our method is based on individual expansions of each mode pro�le component into a set of a priori
de�ned functions of one coordinate axis (vertical), here, �eld components of some slab waveguide
mode. The expansion is global, meaning that the same basis functions are used at any point on
the horizontal axis. The unknown expansion coe�cients { in our case functions, de�ned on the
horizontal axis { are found by means of variational methods [5, 6].

The present method can be viewed as some bridge between two popular approaches, namely
the FMM on the one hand and the EIM on the other. In the standard EIM the 2D problem of
�nding modes of the waveguide is reduced to consecutive solving two 1D problems: at �rst, the 1D
modes, and their propagation constants, of the constituting slab waveguides are found, and then
their propagation constants are used to de�ne e�ective refractive indices of a reduced 1D problem.
In general this is a very quick and easy approach for a rough estimation of mode parameters.
However, in case one of the constituting slabs doesn't support a guided mode (for example, some
substrate material with air on top) it is impossible to uniqu ely de�ne the e�ective refractive index
in that particular region of the reduced problem. Should it be the refractive index of the cladding,
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refractive index of the air, or something in between? The restriction of the present approach to
one-term expansions will answer this question.

The validity of the method was checked on several structures, including waveguides with rectan-
gular and non-rectangular piecewise-constant refractiveindex distributions, and a di�used waveg-
uide. Comparison shows that the present method is a more consistent and accurate alternative to
the standard EIM and also can be pushed to its limits and used for rigorous computations.

The paper is organized as follows. In section 2 the problem of�nding vectorial modes of the
dielectric waveguides is stated, then some properties of slab modes and the modal �eld ansatz are
described in sections 3 and 4. The equations for the coe�cient functions are derived in section 5.
Section 6 outlines the numerical solution methods. The relation of the present method to the EIM
and FMM is explained in more detail in sections 7 and 8. Then insection 9 numerical results
for several waveguide con�gurations are presented. Finally some concluding remarks are made in
section 10.

2 Variational form of the vectorial mode problem

Consider a z-invariant dielectric isotropic waveguide de�ned on its cross-section by a refractive
index n(x; y) or relative dielectric permittivity " (x; y) = n2(x; y) distribution. Figure 1 shows two
examples.

Figure 1: Examples for 3D dielectric waveguides de�ned on their
cross-section by permittivity distribution " (x; y ). The structures are
invariant along the z-axis. (a) box-shaped hollow-core waveguide,
a concept from [7], the subject of section 9.1, (b) a standard rib
waveguide, investigated in section 9.2.

The propagation of monochromatic light, given by the electric �E and magnetic �H components of
the optical �eld, with propagation constant � and frequency! ,

�E(x; y; z; t ) = E(x; y) e� i �z ei !t ; �H (x; y; z; t ) = H (x; y) e� i �z ei !t ; (1)

is governed by the Maxwell equations for the mode pro�le components E and H

!" 0"E + i CH = �R H ;
!� 0� H � i CE = � �R E;

(2)

with

R =

0

@
0 1 0

� 1 0 0
0 0 0

1

A ; C =

0

@
0 0 @y

0 0 � @x

� @y @x 0

1

A ; (3)

vacuum permittivity "0, vacuum permeability � 0, relative permittivity " (x; y) = n2(x; y). Here and
further in this paper it is assumed that the relative permeability � is equal to 1, as is the case for
most materials at optical frequencies.

We will work with a variational formulation of the Maxwell eq uations. Solutions (�; E; H ) of
the equations (2) correspond to stationary points (E; H ) of the functional [5]

F (E; H ) =
!" 0hE; "Ei + !� 0hH ; H i + i hE; CH i � i hH ; CEi

hE; RH i � h H ; REi
; (4)

with propagation constant � = F (E; H ) equal to the value of the functional at the stationary
point. The inner product used is hA ; B i =

R
A � � B dx dy. The natural interface conditions are the

continuity of all tangential �eld components across the interfaces.
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3 Slab modes

In this section we will consider modes of slab waveguides, which we will use in the next section as
building blocks to construct approximations of the modes ofwaveguides with arbitrary 2D cross-
sections. Furthermore, we introduce rotations of the slab modes; these rotations will be needed to
provide a physical motivation for the particular form of the approximations that we will employ.

Figure 2: A slab waveguide with permittivity distribution " r (x) and principal component

� E y of a corresponding TE slab mode (5).

A one dimensional TE mode, propagating in thez-direction with propagation constant � r;TE
,

of the slab waveguide, given by the permittivity distributi on " r (x) (Figure 2) can be represented as
�

Ex ; Ey ; Ez

H x ; H y ; H z

�
(x; y; z) =

�
0; � E y (x); 0

� H x (x); 0; � H z (x)

�
e� i � r;TE

z: (5)

The principal electric component � E y satis�es the equation
�
� E y (x)

� 00
+ k2" r (x)� E y (x) = � 2

r;TE
� E y (x) (6)

with vacuum wavenumber k = 2 �=� . The remaining two nonzero components of the mode pro�le
can be derived directly from � E y :

� H x (x) = �
� r;TE

!� 0
� E y (x); � H z (x) =

i
!� 0

�
� E y (x)

� 0
: (7)

The slab waveguide (Figure 2) is by de�nition invariant in th e (y; z)-plane. So if a modal solution
of Maxwell equations propagating in the z-direction will be rotated in the ( y; z)-plane by an angle
� (Figure 3), it will still remain a modal solution of the Maxwe ll equations, but now propagating
in the direction ( y; z) = ( � sin � ; cos� ):
�

Ex ; Ey ; Ez

H x ; H y ; H z

�
(x; y; z) =

�
0; � E y (x) cos�; � E y (x) sin �

� H x (x); � � H z (x) sin �; � H z (x) cos�

�
e� i � r;TE

(� sin �y + cos �z ):

(8)

Figure 3: A slab TE (TM) mode propagating in the z-direction with propa-
gation constant � r,TE (TM) is rotated around the x-axis by an angle � . The ro-
tated mode propagates with the same propagation constant, but in the direction
(y; z) = ( � sin �; cos� ).

Similarly a 1D TM slab mode, propagating in the z-direction with propagation constant � r;TM

�
Ex ; Ey ; Ez

H x ; H y ; H z

�
(x; y; z) =

�
� E x (x); 0; � E z (x)

0; � H y (x); 0

�
e� i � r;TM

z; (9)

will still be a solution of the Maxwell equations after a rotation around the x-axis (Figure 3)
�

Ex ; Ey ; Ez

H x ; H y ; H z

�
(x; y; z) =

�
� E x (x); � � E z (x) sin �; � E z (x) cos�

0; � H y (x) cos�; � H y (x) sin �

�
e� i � r;TM

(� sin �y + cos �z ):

(10)
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The principal magnetic component � H y satis�es the equation
�

1
" r (x)

(� H y (x))0
� 0

+ k2� H y (x) = � 2
r;TM

1
" r (x)

� H y (x): (11)

Again the remaining two nonzero components of the mode pro�le can be derived directly from� H y :

� E x (x) =
� r;TM

!" 0" r (x)
� H y (x); � E z (x) = �

i
!" 0" r (x)

�
� H y (x)

� 0
: (12)

4 Modal �eld ansatz

We now return to the vectorial modes of the 3D waveguides, as in section 2. Each �eld component
F 2 f Ex ; Ey ; Ez; H x ; H y ; H zg is represented individually as a superposition ofmF a priori known
functions X F

j (x), de�ned on one coordinate axis, times some unknown coe�cient-function Y F
j (y),

de�ned on the other axis:

F (x; y) =
mFX

j =1

X F
j (x)Y F

j (y): (13)

For the functions X we will take components of slab modes from some reference slice(s). Further
in the paper two types of the expansion will be relevant, one which introduces 5 unknown functions
Y per slab mode, and another one, which introduces only 3. These will be called �ve component
approximation (VEIM5) and three component approximation ( VEIM3), respectively.

In case of VEIM5, the TE basis mode (5) numberj with mode pro�le components � E y
j , � H x

j ,

� H z
j contributes to the expansion of componentsEy , Ez, H x , H y and H z with the form � E y

j Y E y
j ,

� E y
j Y E z

j , � H x
j Y H x

j , � H z
j Y H y

j and � H z
j Y H z

j . Likewise, the TM basis mode (9) numberl with mode

pro�le components � E y
l , � H x

l , � H z
l contributes to the expansion of componentsEx , Ey , Ez, H y and

H z with the form � E x
l Y E x

l , � E z
l Y E y

l , � E z
l Y E z

l , � H y
l Y H y

l , � H y
l Y H z

l , such that the complete expansion
looks like

�
Ex ; Ey ; Ez

H x ; H y ; H z

�
(x; y; z) =

P

j 2 TE

 
0; � E y

j (x)Y E y
j (y); � E y

j (x)Y E z
j (y)

� H x
j (x)Y H x

j (y); � H z
j (x)Y H y

j (y); � H z
j (x)Y H z

j (y)

!

+

+
P

l2 TM

 
� E x

l (x)Y E x
l (y); � E z

l (x)Y E y
l (y); � E z

l (x)Y E z
l (y)

0; � H y
l (x)Y H y

l (y); � H y
l (x)Y H z

l (y)

!

:

(14)

This expansion has the drawback that the functions making upsome of the components can
become linearly dependent; for example, the full set of� H y

l (x) components from TM modes form a
complete set; thus any� H z

j (x) from a TE mode can be expressed in that complete set of functions.
When using a limited number of modes in the expansion, no problems result from this; however,
increasing the number of modes will at some point make the problem ill-conditioned. Therefore,
we introduce a di�erent expansion, which we call VEIM3, in which we omit contributions of some
modal components - making sure that each vector component isonly represented by either TE
of TM slab mode components. So a TE basis mode (5) numberj with mode pro�le components
� E y

j , � H x
j , � H z

j contributes to the expansion of componentsEy , Ez and H x with the form � E y
j Y E y

j ,

� E y
j Y E z

j , � H x
j Y H x

j . Likewise a TM basis mode (9) numberl with mode pro�le components � E y
l ,

� H x
l , � H z

l contributes to the expansion of componentsEx , H y and H z with the form � E x
l Y E x

l ,

� H y
l Y H y

l , � H y
l Y H z

l , such that the complete expansion looks like

�
Ex ; Ey ; Ez

H x ; H y ; H z

�
(x; y; z) =

P

j 2 TE

 
0; � E y

j (x)Y E y
j (y); � E y

j (x)Y E z
j (y)

� H x
j (x)Y H x

j (y); 0; 0

!

+

+
P

l2 TM

 
� E x

l (x)Y E x
l (y); 0; 0

0; � H y
l (x)Y H y

l (y); � H y
l (x)Y H z

l (y)

!

:

(15)
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Note that in both expansions each contributing component� F of a 1D mode is used to represent
the �eld not only in the slab segment where it belongs, as in EIM and FMM methods, but also
in the whole waveguide. So even with a single slab mode in bothexpansions, (14) and (15), it is
possible to construct an approximation of the �eld in the whole structure. In section 7 we will
study in detail properties of such one-mode-expansions.

The form of the expansion (14) was inspired by the mode matching techniques that use the
physically motivated approach of employing rotated modes (8), (10) to locally expand the total
�eld [8, 9]. In the present approach though, we attribute those parts of the slab mode components
that do not depend on x to the functions Y F , treating them as unknowns { but the x-dependence
of the y and z components is still the same. In the sections 7 and 8 we will study the behavior of
these functionsY F .

What concerns the choice of the reference slice(s), it seemsthat modal components from the
slice, where the maximum power is expected to be localized, give the best results. Further in this
paper VEIM5 will be used with a few modes only for rough and e�cient approximations, while
VEIM3 will be used with higher numbers of modes to obtain accurate, converged results. We do
not restrict to using modes from one reference slice only; weobserve that adding mode(s) from
another slice can greatly improve accuracy for lower numberof modes in the expansion. However,
care must be taken; the problem can become ill-conditioned if the modes become nearly linear
dependent.

In the following all the slab mode components� , which are used to expand a �eld component
F of the complete waveguide, we will denote asX F (just like in eqn. (13)).

5 Reduced problem

The next question is how to �nd corresponding functionsY , such that the expansion (13) represents
the true solution in the best possible way. For this purpose we apply variational restriction [2, 6]
of the functional (4). In short it can be outlined as follows. As it was already mentioned the
critical points of the functional (4), which satisfy some continuity conditions, are solutions of the
Maxwell equations (2) and, vice versa, solutions of the Maxwell equations (2) are critical points of
the functional (4).

After insertion of the expansions (14) or (15), variation of the functional (4) with respect to a
function Y F , a vector function made up of all functionsY F , results in the following system of �rst
order di�erential equations for Y F with parameter � :

A 11Y E x + A 12(Y H z )0 = � A 13Y H y

A 21Y E y + A 22Y H z = � A 23Y H x

A 31Y E z + A 32(Y H x )0+ A 33Y H y = 0
A 41Y H x + A 42(Y E z )0 = � A 43Y E y

A 51Y H y + A 52Y E z = � A 53Y E x

A 61Y H z + A 62(Y E x )0+ A 63Y E y = 0 :

(16)

The elements of the matricesA include the overlap integrals (here: ha; bi =
R

a� b dx) of the
functions X F

j (x), their derivatives, and the local permittivity distribut ion of the waveguide:

A 11(p; j ) = ! hX E x
p ; "X E x

j i A 12(p; j ) = i hX E x
p ; X H z

j i A 13(p; j ) = hX E x
p ; X H y

j i

A 21(p; j ) = ! hX E y
p ; "X E y

j i A 22(p; j ) = � i hX E y
p ; (X H z

j )0i A 23(p; j ) = �h X E y
p ; X H x

j i

A 31(p; j ) = ! hX E z
p ; "X E z

j i A 32(p; j ) = � i hX E z
p ; X H x

j i A 33(p; j ) = i hX E z
p ; (X H y

j )0i

A 41(p; j ) = !� hX H x
p ; X H x

j i A 42(p; j ) = � i hX H x
p ; X E z

j i A 43(p; j ) = �h X H x
p ; X E y

j i

A 51(p; j ) = !� hX H y
p ; X H y

j i A 52(p; j ) = i hX H y
p ; (X E z

j )0i A 53(p; j ) = hX H y
p ; X E x

j i

A 61(p; j ) = !� hX H z
p ; X H z

j i A 62(p; j ) = i hX H z
p ; X E x

j i A 63(p; j ) = � i hX H z
p ; (X E y

j )0i

(17)

Note that the permittivity appears only in A 11, A 21 and A 31, hence only these matrices arey-
dependent.
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If the permittivity exhibits discontinuities along the y-direction, the functions

Y E x and Y H x ; Y E z and Y H z (18)

are required to be continuous at the respective positions.
It turns out that by algebraic operations the system of �rst o rder di�erential equations (16)

can be reduced to a system of second order di�erential equations for the vector functions Y E x and
Y H x only. Moreover, since the componentsEy and Ez, H y and H z are approximated by the same
functions � in the representations (14) and (15), the matricesA satisfy the following equalities:

A 13 = � i A 12

A 31 = A 21; A 32 = i A 23; A 33 = � A 22

A 43 = � i A 42

A 61 = A 51; A 62 = i A 53; A 63 = � A 52;

(19)

and hence the system (16) reduces to

S1u + ( S2u0+ � S3u)0 = � 2S2u + � S3u0; (20)

with u(y) =
�

Y E x (y)
Y H x (y)

�
and (anti-)block-diagonal matrices S of the following form:

S1 =
�

A 11 0
0 A 41

�
;

S2 =

 
� i A 12

�
A 51 + A 52A � 1

21 A 22
� � 1A 53 0

0 � i A 42
�
A 21 + A 22A � 1

51 A 52
� � 1A 23

!

;

S3 =

 
0 A 12A � 1

51 A 52
�
A 21 + A 22A � 1

51 A 52
� � 1A 23

A 42A � 1
21 A 22

�
A 51 + A 52A � 1

21 A 22
� � 1A 53 0

!

:

(21)
Across the vertical interfaces continuity of

u and S2u0+ � S3u (22)

is required.
As soon as the function u, or in other words Y E x and Y H x , are known, the functions Y

corresponding to the four other components can be derived asfollows:

Y E y = i A � 1
21 A 22

�
A 51 + A 52A � 1

21 A 22
� � 1A 53(Y E x )0+ �

�
A 21 + A 22A � 1

51 A 52
� � 1A 23Y H x ;

Y E z = � A � 1
21 A 22

�
A 51 + A 52A � 1

21 A 22
� � 1A 53Y E x � i

�
A 21 + A 22A � 1

51 A 52
� � 1A 23(Y H x )0;

Y H y = �
�
A 51 + A 52A � 1

21 A 22
� � 1A 53Y E x + i A � 1

51 A 52
�
A 21 + A 22A � 1

51 A 52
� � 1A 23(Y H x )0;

Y H z = � i
�
A 51 + A 52A � 1

21 A 22
� � 1A 53(Y E x )0+ � A � 1

51 A 52
�
A 21 + A 22A � 1

51 A 52
� � 1A 23Y H x :

(23)

Note that substituting Equation (23) into the continuity co nditions (22) shows that (22) exactly
implies the continuity of the relevant electromagnetic components (18).

6 Method of solution

In general the system (20) can be solved by the Finite Elementmethod [10, 11]. It relies on a spatial
discretization, i.e. divides the whole computational domain into a number of elements. On each
of these elements the unknown function is represented as a superposition of some basis functions.
The coe�cients of the expansion are found using the weak formof eqn. (20). While this method is
very general, it quickly introduces a large number of unknowns.
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However, due to common techniques of fabrication many waveguides do not have a completely
arbitrary refractive index distribution, but rather one wh ich is piecewise constant along the hori-
zontal axis. The waveguide then can be split in several vertical slices, where the refractive index
does not change in the horizontal direction. In each of theselayers the general solution of (20)
can be written down analytically. Gluing them together across the vertical interfaces will give the
desired mode pro�le.

Both of these methods can be applied to �nd not only the fundamental, but also higher order
modes. In the following we will outline each of these methodsin more detail.

6.1 Arbitrary refractive index distribution: Finite Eleme nt Method

In case of an arbitrary permittivity distribution "(x; y) (di�used waveguide, waveguide with slanted
sidewalls) the matricesS depend ony, as their elements include overlap integrals with the permit-
tivity " (x; y). One of the ways to solve the di�erential equation (20) is by using the Finite Element
Method.

By multiplying both sides of (20) from the left by some continuous test vector-function v and
integrating over y one gets the weak form of equation (20):

Z �
� v | S1u + ( v | )0S2u0� dy + �

Z �
(v | )0S3u + v | S3u0� dy + � 2

Z
v | S2u dy = 0 : (24)

Then we expand the solutionu into a �nite combination of the basis functions ' ij ,

u(y) =
ndX

i =1

ngX

j =1

aij ' ij (y); (25)

with nd the dimension of the vectoru; ng the number of consecutive grid pointsyj into which the
y-axis has been divided, and

' ij (y) =

0

B
B
B
B
B
B
@

0
...

'̂ j (y)
...
0

1

C
C
C
C
C
C
A

 i th position (26)

with, for example, linear basis functions

^' j (y) =

8
>>><

>>>:

0; y < y j � 1 or y � yj +1 ;
y� yj � 1
yj � yj � i

; yj � 1 � y < y j ;

yj +1 � y
yj +1 � yj

; yj � y < y j +1 :

(27)

As eqn. (24) should hold for an arbitrary continuous v, we choose it to be one of the basis
functions ' ij . For i = 1 ; : : : ; nd and j = 1 ; : : : ; ng this results in the system of exactlynd � ng linear
equations

(� Ŝ1 + Ŝ2)a + � (Ŝ3 + Ŝ5)a + � 2Ŝ4a = 0 ; (28)

wherea| = ( aij ) = ([ a11; : : : ; and 1]; [a12; : : : ; and 2]; : : : ; [a1ng ; : : : ; and ng ]) (the subscript ij here refers
to the j th element of the i th subvector). Since for any square matrixM of dimension ndng � ndng

' |
pmM ' ij = '̂ m (y) � M pi (y) � '̂ j (29)

holds, the matricesS turn to be of the following form

Ŝ1(pm; ij ) =
R

^' m S1pi '̂ j dy;
Ŝ2(pm; ij ) =

R
('̂ m )0S2pi ('̂ j )0dy;

Ŝ3(pm; ij ) =
R

('̂ m )0S3pi '̂ j dy;
Ŝ4(pm; ij ) =

R
^' m S2pi '̂ j dy;

Ŝ5(pm; ij ) =
R

^' m S3pi ('̂ j )0dy;

(30)
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where the indicespm and ij have the same meaning as in the de�nition of the vectora.
The solution of the quadratic eigenvalue problem (28) with � as an eigenvalue can be found

by introducing an auxiliary vector b = � a. (28) can then be transformed into the following linear
eigenvalue problem

�
0 1

� Ŝ� 1
4 (� Ŝ1 + Ŝ2) � Ŝ� 1

4 (Ŝ3 + Ŝ5)

� �
a
b

�
= �

�
a
b

�
: (31)

This is a quite straightforward, but expensive approach, asthe dimension of the transformed
problem is doubled in comparison to the original one. Other more involved approaches to tackle
a quadratic eigenvalue problem can be found e.g. in [12]. We apply standard general eigenvalue
solvers as embedded within the LAPACK [13] package. Specialized solvers could be employed,
provided that an initial guess for the propagation constant, or a range of possible eigenvalues, are
available for the problem at hand. On the other hand, there are situations where all the propagation
constants � and corresponding functionsu need to be found together, e.g. if one wants to expand a
3D �eld in terms of vectorial modes of some channel waveguide, as required for the implementation
of transparent boundary conditions [14].

While the entire 2D problem could also be solved directly by means of a Finite Element method,
the number of degrees of freedom in such cases would be much higher than when solving the 1D
equations (20) using the Finite Element Method; instead of having to use a triangulation of the
entire 2D domain, only 1D �nite elements are needed; furthermore, the number of degrees of
freedom on each node is equal to the number of modes in the expansion, which is typically a small
number.

6.2 Piecewise constant refractive index distribution

If a waveguide has a piecewise constant rectangular refractive index pro�le, it can be divided by
vertical lines into slices with constant refractive index distribution along the y-direction. In each
of these slices the matricesS do not depend ony. Then (20) can be rewritten in a more familiar
manner: Inside each of the slicesu should satisfy a system of second order di�erential equations
with constant coe�cients S and a parameter � 2

S1u + S2u00= � 2S2u; (32)

together with the continuity conditions (22). Moreover the matrices S1 and S2 are block-diagonal
in such a way that the equations for the functionsY E x and Y H x decouple inside each of the slices;
coupling occurs only across the vertical interfaces.

Inside each slice a particular solution of the system (32) can be readily written as

u = ce�y p (33)

with some constants c; � and a vector p. By substituting (33) into (32) we �nd a generalized
eigenvalue problem with � 2 = � 2 � � 2 as an eigenvalue:

S1p = � 2S2p: (34)

So inside each of the slices with uniform permittivity along the y-axis the function u can be
represented as

u =
X

j

0

@c1j e

q
� 2 � � 2

j y
+ c2j e

�
q

� 2 � � 2
j y

1

A p j (35)

with eigenvalues� j and corresponding eigenvectorsp j from (34).
By matching the solutions of the each individual slab acrossthe vertical interfaces using (22)

and looking only for exponentially decaying solutions fory ! �1 , one can obtain an eigenvalue
problem

M (� )c = 0 : (36)
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The vector c consists of all unknown coe�cients c1j and c2j from the representations ofu (35) on
all individual slices. The matrix M depends on� in a non-linear, even non-polynomial way. One
of the strategies to tackle this is at �rst to specify a range of admissible values� 2 [I 1; I 2], where
solutions � are sought. As we are looking only for propagating modes, with decaying �eld (35) at
y ! �1 , I 1 should be not smaller than the biggest eigenvalue� j of (34) in the left-most and the
right-most slabs. At the same time we require that there exists at least one oscillating function in
at least one vertical slab. SoI 2 should be smaller than the biggest eigenvalue� j of (34) of all the
constituting slabs, except the left- and the right-most ones. Once this interval is at hand, we scan
through it looking for a � such that the matrix M (� ) has at least one zero eigenvalue. Obviously,
to �nd a non-trivial solution with certain accuracy require s some iterations. Moreover a large step
size might lead to missing some roots while scanning the interval.

Once a nontrivial solution � , c of (36) is at hand, u can be reconstructed using (35). And then
all �eld components can be obtained according to expressions (23) together with (14) or (15).

7 Relation with the E�ective Index Method

In the following section we are going to show what happens if only a single, TE or TM, slab mode
is taken into account in VEIM5 (14). Using the variational re asoning we will rigorously derive an
analog to the E�ective Index method.

7.1 TE polarization

Let us take only one TE slab mode with propagation constant � r from a reference slice r with
permittivity distribution " r (x), and use it to represent the vectorial �eld pro�le of the com plete
waveguide as in eqn. (14). Due to the fact thatX E x � 0, according to (20) the unknown function
Y H x satis�es the eqn.

A41Y H x +
�

� i A42(A21 + A22A � 1
51 A52)� 1A23(Y H x )0� 0 =

� 2�
� i A42(A21 + A22A � 1

51 A52)� 1A23
�
Y H x :

(37)

After some manipulations, using the relations between the modal components� E y , � H x and
� H z of the slab mode the above relation can be rewritten as follows

� 1
"e�

(Y H x )0
� 0

+ k2Y H x = � 2 1
"e�

Y H x (38)

with

"e� (y) =
� 2

r

k2 +
h� E y ; (" (x; y) � " r (y)) � E y i

h� E y ; � E y i
: (39)

This looks exactly as a TM mode equation, similar to the standard E�ective Index Method.
In the reference slice one has" = " r , and the e�ective permittivity "e� is equal to the squared
e�ective index of the mode of the reference slice� 2

r =k2. In other slices this squared e�ective index
is modi�ed by the di�erence between the local permittivity an d that of the reference slice, weighted
by the local intensity of the fundamental component of the reference mode pro�le. Hence, on the
contrary to the EIM, even in slices where no guided mode exist, the e�ective permittivity can still
be rigorously de�ned.

Now it is instructive to see how the mode pro�le adjusts both in the reference slabs and else-
where. Inside a slice with constant permittivity "e� , eqn. (38) permits solutions of the form

Y H x = c+ ei �y + c� e� i �y (40)

for arbitrary constants c+ and c� and with

� 2 + � 2 = k2"e� : (41)
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With the abbreviation � 2 = k2"e� from (23) it follows that

Y H z =
� r �
� 2

�
c+ ei �y + c� e� i �y �

;

Y E y = Y H z ;

Y E z =
� r �
� 2

�
c+ ei �y � c� e� i �y �

;

Y H y = � Y E z :

(42)

By introducing an angle � such that cos� = �=� , one can write

� Y E x ; Y E y ; Y E z

Y H x ; Y H y ; Y H z

�
(y) = c+

� r

�
ei � sin �y

� 0; cos�; sin �
�=� r ; � sin �; cos�

�
+

+ c�
� r

�
e� i � sin �y

� 0; cos�; � sin �
�=� r ; sin �; cos�

�
:

(43)

If we use the principal square roots of� 2 and � 2 for � and � , and the principal inverse cosine
for � eq. 43 can be interpreted as follows. In the slice where the reference slab mode lives� = � r ,
and we �nd that functions Y act as a rotation of the slab mode, such that the projection ofthe
propagation constant of this mode onto thez-axis will match the global propagation constant � .
In other slices, in addition to the rotation of the y and z components of the slab mode, thex
component is scaled by�=� r .

7.2 TM polarization

Analogously, the eqn. (20) can be rewritten for a single TM mode, with a �eld template as in (14).
We now have X H x � 0 in eqn. (20) and using the properties of the TM slab mode, theoriginal
equation for the unknown function Y E x ,

A11Y E x +
�

� i A12
�
A51 + A52A � 1

21 A22
� � 1A53(Y E x )0� 0 =

� 2�
� i A12

�
A51 + A52A � 1

21 A22
� � 1A53

�
Y E x ;

(44)

can be rewritten as � 1
"1e�

(Y E x )0
� 0

+ k2"2Y E x = � 2 1
"1e�

Y E x ; (45)

with

"1e� (y) =
� 2

r

k2

h� E z ; " r (x)� E z i
h� E z ; " (x; y)� E z i

+
h� H y ; � H y i

h� H y ; 1
" r (x) � H y i

h� E z ; (" (x; y) � " r (x)) � E z i
h� E z ; " (x; y)� E z i

;

"2(y) =
h� E x ; " (x; y)� E x i
h� E x ; " r (x)� E x i

:

(46)

This appears to be neither a standard TE nor a TM mode equation, but something in between,
with the local refractive index distribution appearing bot h in the terms with and without derivative.
In the reference slice with" = " r , the e�ective permittivity "1e� is equal to the squared e�ective
index � 2

r =k2 of the mode of the reference slice and"2 = 1. Contrary to the EIM, even in slices
where no guided mode exists quantities that act like e�ectiveindices can still be rigorously de�ned.

What concerns the mode pro�le, in intervals along the y-axis with constant "1e� and "2, local
solutions of eqn. (45) are of the form

Y E x = c+ ei �y + c� e� i �y (47)

with
� 2 + � 2 = k2"1e� "2: (48)
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Let us denote the right hand side of eqn. (41) as� 2 = k2"1e� "2 and "3(y) = h� E z ;" (x;y )� E z i
h� E z ;" r (x)� E z i , then

according to eqn. (23) one obtains

Y H z =
� r �" 2

� 2

�
c+ ei �y � c� e� i �y �

;

Y E y = �
1
"3

Y H z ;

Y H y =
� r �" 2

� 2

�
c+ ei �y + c� e� i �y �

;

Y E z =
1
"3

Y H y :

(49)

By introducing an angle � such that cos� = �=� , one can write

� Y E x ; Y E y ; Y E z

Y H x ; Y H y ; Y H z

�
(y) = c+

� r "2

�
ei � sin �y

� �=� r "2; � " � 1
3 sin �; " � 1

3 cos�
0; cos�; sin �

�
+

+ c�
� r "2

�
e� i � sin �y

� �=� r "2; " � 1
3 sin �; " � 1

3 cos�
0; cos�; � sin �

�
:

(50)

In the reference slice� = � r and we �nd that the functions Y also in this case act as a rotation
of the slab mode. In all other slices, while they- and z-components of the magnetic �eld are just
rotated by the angle � , the electric y and z components are not only rotated, but also scaled by
" � 1

3 . In addition to this the x-component is scaled by�=� r "2.

8 Relation with the Film Mode Matching Method

As we could see in the previous section if only one, TE or TM, slab mode is used to expand the
total �eld pro�le using the 5 component expansion (14), the variational procedure leads to functions
Y that act as a rotation. Then the �eld representation inside t he slice where the slab mode lives
replicates the �eld ansatz of the FMM (cf. section 4). In the following we look at the the case when
multiple TE and TM slab modes appear in the 5 component expansion (14).

Let us rewrite the second, third, �fth and sixth equations of (16) as

I TE (Y E y
TE � Y H z

TE ) + I TM (Y E y
TM + Y H z

TM ) = A � 1
21 A 23(� Y H x � G TE Y H z

TE )
� I TE (Y E y

TE � Y H z
TE ) + I TM (Y E y

TM + Y H z
TM ) = A � 1

51 A 53(G TM Y E y
TM � i (Y E x )0)

I TE (Y E z
TE + Y H y

TE ) + I TM (Y E z
TM � Y H y

TM ) = A � 1
21 A 23(G TE Y H y

TE � i (Y H x )0)
I TE (Y E z

TE + Y H y
TE ) � I TM (Y E z

TM � Y H y
TM ) = A � 1

51 A 53(� Y E x � G TM Y E z
TM )

(51)

with functions Y a
b corresponding to a vector of all the functionsY related to modal component

of polarization b, used to expand componenta of the total �eld. G b is a diagonal matrix with
propagation constants � r;j of the slab modes of polarizationb sitting on the diagonal. Matrices

I TE =
�

1nTE � nTE

0nTM � nTE

�
; I TM =

�
0nTE � nTM

1nTM � nTM

�
; (52)

have been introduced to increase the readability of the equations. Here 1d and 0d denote corre-
spondingly the unity- and zero-matrix of a dimension d, and symbols nTE and nTM denote the
number of slab modes of respectively TE and TM polarization included in the expansion (14).

Obviously, functions Y that satisfy

Y E y
TE = Y H z

TE ; Y E y
TM = � Y H z

TM ;
� Y H x = G TE Y H z

TE ; G TM Y E y
TM = i ( Y E x )0;

Y E z
TE = � Y H y

TE ; Y E z
TM = Y H y

TM ;
G TE Y H y

TE = i ( Y H x )0; � Y E x = G TM Y E z
TM

(53)
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are solutions of (51). Using these relations together with the �rst and the fourth equations of (16)
result in

(Y E x )00+ ( G TM )2Y E x = � 2Y E x

(Y H x )00+ ( G TE )2Y H x = � 2Y H x :
(54)

According to eqns. (51) and (54) all the functionsY decouple inside the slice where the slab
modes belongs to. So we can solve these equations for all the components of Y E x and Y H x

separately. Solutions of (54) have the form

Y H x
j = c+ ;j ei � j y + c� ;j e� i � j y (55)

with
� 2 + � 2

j = � 2
r;j : (56)

Other components can be derived from (51) as

� Y E x
j ; Y E y

j ; Y E z
j

Y H x
j ; Y H y

j ; Y H z
j

�
(y) = c+ ;j ei � r;j sin � j y

� 0; cos� j ; sin � j

1; � sin � j ; cos� j

�
+

+ c� ;j e� i � r;j sin � j y
� 0; cos� j ; � sin � j

1; sin � j ; cos� j

�
;

(57)

where cos� j = �=� r ;j .
Hence the functionsYj corresponding to TE slab mode numberj rotate the original slab mode

around the x-axis such that the projection of its propagation constant � r;j onto the direction of
propagation z will be precisely the propagation constant� of the mode of the complete waveguide
structure. The same is true for TM slab modes.

We showed that the �eld ansatz of rotated slab modes, as used locally in the Film Mode
Matching method [9, 8] can be found also by the present approach where it appears to be optimal.
While in itself it might seem rather pointless to reinvent th e method, the idea behind the present
technique might be used in deriving some sort of analogue of the FMM for full 3D scattering
problems, in which the structure varies in all 3 directions [14].

9 Numerical results

We will illustrate the method with four examples. The �rst tw o deal with waveguides with piecewise
constant rectangular refractive index distribution. The t hird example is a waveguide with slanted
sidewall and the fourth is an indi�used waveguide. We will use the acronym VEIM (variational
e�ective index method) for results of the technique as introduced in sections 2 - 8.

9.1 Box-shaped waveguide

Figure 4: Structure of the Box-Shaped Waveguide. The vertical
extents of the computational window range from � 2:5�m to 2:5�m .

Consider the box-shaped waveguide of Figure 4, originatingfrom [7]. It can be divided into
�ve vertical slices with three distinct cross-sections (Figure 5, left). We take slab modes from the
side walls of the box (Figure 5, middle) to approximate the modal �eld in the entire cross-section
(Figure 5, right). The waveguide will be analyzed with both 3 (Equation (15) ) and 5 (Equation (14)
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Figure 5: Subdivision of the waveg-
uide into slices. Slab modes of the side
walls are used to approximate the �eld
of the mode everywhere.

) component approximations, denoted by VEIM3a;b andVEIM5 a;b, where a and b are the number
of TE and TM slab modes taken into account.

In Figure 6 VEIM5 1;0 approximation of the vectorial mode pro�le of the fundamental TE-like
mode is shown. In this case� E y is multiplied by Y E y and Y E z to get Ey and Ez respectively; � H x is
multiplied by Y H x to get H x ; and � H z is multiplied by Y H y and Y H z to get H y and H z respectively.
The �gure contains plots of all contributing functions. Con sistent with the observation in sec. 7.1,
we see thatY E y = Y H z and Y E z = � Y H y . Note that, contrary to the EIM, the �eld pro�le can
still be visualized even when no local guided slab mode exists.

Figure 6: Square waveguide: (a) Functions � in expansion VEIM5 1;0 ; (b) Functions Y in expansion VEIM5 1;0 ; (c)
Vectorial �eld pro�le VEIM5 1;0 .

Next, Figure 7 gives an impression of the "converged" �eld pro�le obtained using VEIM3 30;30.
The slab mode basis has been discretized by Dirichlet boundary conditions on the boundaries of
the vertical computational window as given in Figure 4. Comparison with Figure 6 shows that
even with a single mode in the representation, the main features of the true �eld pro�le are already
visible. So the present method with one mode in the expansioncan very well serve as a quick tool
for qualitative analysis of the waveguide structures, while also being able to quantitatively analyze
the waveguide by using more modes in the expansion.

Figure 8 shows the propagation constant of the fundamental modes of the waveguide versus
the number m of TE and TM modes in the expansion VEIM3m;m for both the present method
and a commercial FMM solver [15]. Both methods converge to the same value with comparable
convergence speed.
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Figure 7: "Converged" (VEIM3 30;30 ) vectorial �eld pro�les of the fundamental TE-like mode.

Figure 8: Convergence of the e�ective index of the fundamen-
tal TE-like mode of the box-shaped waveguide Figure 4.

Figure 9: Structure of the Rib Waveguide. Vertical extents of
the computational window are [ � 2; 2]�m .

9.2 Rectangular rib waveguide

In this section we consider the rib structure from Figure 9, which is used as a benchmark waveguide
in [2, 16, 17, 4]. The structure supports a fundamental TE andTM mode for all etch depths h in the
range we look in, which is [0.2, 1]. The modes are strongly polarized, and thus it may be expected
that an expansion using only TE or only TM modes (similar to a semi-vectorial calculation) will
give good results.

At etch depths greater than 0:5�m guided modes do not exist outside the central slice, so the
EIM fails to uniquely determine the e�ective refractive inde x of those regions. We analyze this
structure with both 3- (15) and 5-component (14) approximations. In the following �gures we
will refer to them as VEIM3 a;b;c;d and VEIM5 a;b;c;d correspondingly. The subscript letters stand
for number of slab modes used in the current approximation:a { number of TE modes from the
central slice, b { number of TE modes from the outer slice, c { number of TM modes from the
central slice, d { number of TM modes from the outer slice.

The slab modes are calculated using Dirichlet boundary conditions on the upper and lower
computational domain boundaries. Because of this, the outer slice mode is still de�ned when the
guided mode of that slice goes below cut-o�.

Figure 10 and Figure 11 show plots of the TE and TM e�ective indices correspondingly using
these di�erent expansions versus the etch depth. The �gures also show the corresponding EIM
results, and, as reference, FMM results obtained by the commercial mode solver [15].

Comparing the results of our method with only one TE (VEIM5 1;0;0;0) or TM (VEIM5 0;0;1;0)
mode of the central slice in the expansion (14) to the EIM results, shows that for larger etch depths,
our results are much closer to the reference results - especially after the outer slice has gone below
cut-o� and the EIM uses the substrate refractive index as (constant) outer slice e�ective index.

Adding one outer slice mode to the VEIM expansion greatly improves its accuracy, especially

14



Figure 10: Convergence of the e�ective index (�=k ) of the fundamental TE mode of the rib waveguide.

Figure 11: Convergence of the e�ective index (�=k ) of the fundamental TM mode of the rib waveguide.

if it is a guided slab mode; the VEIM51;1;0;0 curves are much closer to the reference results than
the VEIM5 1;0;0;0 curves, especially at etch depths below 0:5�m .

Taking �ve inner and one outer slice mode VEIM55;1;0;0 moves the results closer to the reference
curve, while �fteen inner and one outer slice modes VEIM515;1;0;0 yield results that almost coincide
with the reference. Note that these results use only TE or only TM modes in the 5-component
expansion (14), i.e. the resulting �elds are semi-vectorial; apparently a semivectorial approximation
is su�cient for an accurate estimation of the e�ective indice s of this structure.

The present method when using just one central slice TE and TMmode simultaneously with
the three-component-per-mode approximation VEIM31;0;1;0 (15) yields results that are quite far
from the reference data. Moving to the �ve-component-per-mode approximation VEIM51;0;1;0 (14),
on the other hand, gives much better results. Moreover, adding outer slice TE and TM modes
VEIM5 1;1;1;1 greatly improves the estimation of propagation constant for both, TE and TM, po-
larizations.

9.3 Waveguide with non-rectangular piecewise constant cro ss-section

The waveguide cross-section of Figure 12 is part of a polarization rotator in InP/InGaAsP, proposed
in [18]. Due to its slanted sidewall, the modes of this structure are highly hybrid.

Because of the slanted sidewall, the �nite element scheme ismore suitable to calculate the
modes of this structure; the semi-analytical method requires a rather large number of slices, while
the �nite elements automatically take the slant into account.

Figure 13 shows the convergence of the e�ective index of the fundamental mode of the waveguide
versus the number of modes in the 3-component expansion VEIM3a;b (15), with a and b being
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Figure 12: Structure of polarization converter from [18]. The
computational window in the calculations is ( x; y ) 2 [� 2; 2:5] �
[� 2; 3:5]�m 2 ; 50 elements are used in the �nite element scheme.

Figure 13: Convergence of the e�ective index of the funda-
mental mode of the polarization converter.

numbers of TE and TM slab modes from the central (y 2 (0; 1:15)�m ) slab. It also shows the
convergence of the commercial FMM mode solver [15], in whichthe structure is subdivided into
50 slices. Remarkably, starting from just 2 TE and TM modes inthe 3-component expansion (15)
VEIM3 2;2, the e�ective index is stable and close to the converged valueof the FMM solver; 320
modes in the FMM solver lead to an e�ective index of 3.2225, while with just 7 TE and TM modes
the current method predicts already an e�ective index of 3.2223. The �eld pro�les also converge
rapidly; Figure 14 shows the vectorial �elds for (a) one (VEIM31;1), (b) two (VEIM3 2;2), and (c)
seven (VEIM37;7) TE and TM modes in the expansion (15).

Figure 14: Vectorial �eld pro�le of the fundamental mode of the polariz ation converter. (a) VEIM3 1;1 , (b)
VEIM3 2;2 , (c) VEIM3 7;7 .
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9.4 Indi�used waveguide

To show the 
exibility of the present method we apply it to a di �used waveguide [19] with a
refractive index distribution given by

n2(x; y) =
n n2

s + n2
s(1:052 � 1) exp(� x2=16) exp(� y2=4); if x > 0;

n2
c; if x < 0;

(58)

with n2
s = 2 :1, n2

c = 1 :0 and � = 1 :3� m. Similar to the slanted sidewall waveguide described above,
the �nite element implementation of the presented method is the more suitable, since it takes
into account the nonuniform distribution in the y-directio n of the refractive index automatically.
Vertically, the structure is subdivided into 7 layers; horizontally, 20 �nite elements are used. The
computational window used in the calculations is de�ned as (x; y) 2 [� 1; 8] � [� 6; 6]�m 2.

Figure 15: Convergence of the e�ective index of the funda-
mental mode of the di�used waveguide.

Figure 15 shows the convergence of the e�ective index of the fundamental mode of the indif-
fused waveguide versus the number of modes in the 3- (VEIM3a;b) and 5-component (VEIM5a;b)
approximations, with a and b being numbers of TE and TM slab modes of the central (y = 0 �m )
slab. The results are compared to the rigorous Finite Di�erence simulation (with 129 � 129 grid
points) [15]. Since the fundamental mode is strongly polarized, the semi-vectorial approximation
appears to converge much faster.

Figure 16: Field pro�les of the dominant electric
component Ey of the fundamental TE mode: left {
VEIM3 1;1 , right { VEIM3 15;15 .

On Figure 16 �eld pro�les of the dominant electric component Ey of the fundamental TE mode
are shown. The e�ective indexNe� = ��= 2� of the fundamental mode on the left picture is 1:4965
and on the right { 1 :48802, which compares well with the Finite Di�erence simulation { 1:48797.

10 Concluding remarks

A variational method for the fully vectorial analysis of arb itrary isotropic dielectric waveguides was
developed. Similar to the scalar approach [4] this method gives rather accurate estimates of the
propagation constants, sometimes even with only a few termsin the expansion.

When applying the present method with only one slab mode in the expansion of the modal �eld
of the complete waveguide, this mode is transformed in all di�erent slices to �t the true solution
there the best. Together with the shape transformation, thee�ective index of this mode is uniquely
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transformed. Additionally, the expression for the transformed propagation constant is quite simple
and is certainly not more complicated, than the calculation of a slab mode. In this way the present
procedure turns out to be a simple and still a more rigorous way to obtain a �rst intuitive guess
for the propagation constant and �eld pro�le, than the stand ard E�ective Index Method.

It turns out that in case a TE mode is used in the expansion, thereduced equation appears to
be a TM mode equation. At the same time when a TM mode is used, the reduced equation appears
to be neither TE, nor TM mode equation, but something in between, with the e�ective refractive
indices appearing both under the derivative sign and in the right part of the equation.

While in the Film Mode Matching method, rotated modes of each slice are used to locally
expand the �eld, VEIM uses only one set of modes everywhere. We showed that in the reference
slice, where the 1D modes are calculated, VEIM predicts exactly the same rotations as the Film
Mode Matching method uses. In the reference slice the total �eld pro�le is a superposition of these
rotated 1D TE and TM modes; in other slices, however, the components of all the 1D modes mix.

Of course the question remains - would some other combination of slab mode components lead
to faster convergence? For example, one could imagine that in a certain case a superposition of
e.g. explicitly selected pro�les of speci�c slices would lead to similar results as if one would take
functions related to more, let's say, �ve but consecutive modes - from the fundamental to the fourth
order. However, adding �eld pro�les from di�erent slices may lead to a (near) linear dependency
of functions X , and result in non-unique functions Y . Obviously, the safe choice is to use in the
approximation of a component of the total �eld only pro�les f rom a single slice. Nevertheless, when
only a few modal components are used, it may, as our calculations show, be bene�cial to use one
or two modes from other slice(s).

Similar ideas can be applied to optical scattering problemsin 2D and 3D. A preliminary account
of corresponding simulations has been given in [20], [14].
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