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Abstract

We present a simple numerical scheme based on the Finite Element Method (FEM) using
transparent-influx boundary conditions to study the nonlinear optical response of a finite one-
dimensional grating with Kerr medium. Restricting first to the linear case, we improve the standard
FEM to get a fourth order accurate scheme maintaining a symmetric-tridiagonal structure of the
finite element matrix. For the full nonlinear equation, we implement the improved FEM for the
linear part and a standard FEM for the nonlinear part. The resulting nonlinear system of equa-
tions is solved using a weighted-averaged fixed-point iterative method combined with a continuation
method. To illustrate the method, we study a periodic structure without and with defect and show
that the method has no problem with large nonlinear effect. The method is also found to be able
to show the optical bistability behavior of the ideal and the defect structure as a function of both
the frequency or the intensity of the input light. The bistability of the ideal periodic structure can
be obtained by tuning the frequency to a value close to the bottom or top linear band-edge while
that of the defect structure can be produced using a frequency near the defect mode or near the
bottom of the linear band-edge. The threshold value can be reduced by increasing the number of
layer periods. We found that the threshold needed for the defect structure is much lower then that
for a strictly periodic structure of the same length.

Key words: finite element method, optical bistability, periodic (defect) structure, transparent-influx
boundary condition

1 Introduction

The propagation of waves through periodic structures has been extensively studied in recent years, see
e.g. Soukoulis (1993 and 1996). An essential property of these structures is the existence of a frequency
band gap in which propagating modes are absent. When a Kerr nonlinearity is introduced it can effect
many interesting phenomena such as optical switching which is caused by a dynamic shifting of the
band-edge, see e.g. Tran (1996 and 1997) and Wang et al. (1997). In Tran (1996) the author introduced
an optical switch in a nonlinear finite grating using two light pulses at different frequencies, a probe beam
near the band-edge and a strong pump beam in the middle of the band gap to alter the index of refraction
of the structure. The pump beam is used to control the position of the band-edge of the structure so as
to transmit or reflect the probe beam. A drawback of this procedure was that the pump beam did not
penetrate far into the structure and therefore did not change the effective index of refraction significantly.
To increase the field penetration but not to transmit, Tran (1997) have introduced a defect layer in the
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grating structure and shown that the defect structure can indeed improve the performance of these
switching devices. Since the switching mechanism consists of two pulses at difference frequencies, Tran
(1996 and 1997) used the nonlinear finite difference time domain (NFDTD) method to go beyond the
slowly varying envelope approximation and to avoid the complexity of the problem due to the interaction
between two frequencies.

A different approach for an all-optical switch is based on the self-switching arrangement where the output
is dependent on some characteristics of the input light, e.g. power. An example is optical bistability
which can be realized in a nonlinear periodic structure. In this case the input light is monochromatic.
While the threshold value of bistability needed by a periodic structure is relatively high, He and Cada
(1991) proposed a combined structure which is composed of a distributed feedback structure and a phase-
matching layer placed in a Fabry-Perot cavity where the threshold is significantly reduced. Recently,
Lidorikis et al. (1997) and Wang et al. (1997) found that when a single nonlinear defect layer is
introduced into a linear periodic structure then the threshold value of the bistability is compatible with
that of the structure proposed by He and Cada (1991). Throughout this paper we study a bistability that
uses a monochromatic light input in finite periodic structures without and with a defect. For the defect
structure, the nonlinearity will not only be introduced in the defect layer but also in the higher and/or
lower index layers. Because we deal with a single frequency, the Maxwell’s equations are reduced to a
nonlinear Helmholtz equation which is simpler. Furthermore, the numerical calculations in frequency
domain are generally more efficient than those in time domain.

Since 30 years ago, a lot of efforts have been devoted to study the phenomenon of bistability in a periodic
structure. A number of authors, e.g. Marburger and Felber (1978), Winful et al. (1979), Danckaert
et al. (1989 and 1991) proposed an analytical formalism for this problem. All these formalisms are
derived within three basic approximations, i.e. the slowly varying envelope approximation (SVEA), the
approximation of nonlinear terms that appear in the interface conditions and the omission of spatial
third harmonics generated in the structure. Treatments that make use of the full nonlinear interface
conditions in the nonlinear transfer matrix were given by Agarwal and Dutta Gupta (1987) and Dutta
Gupta and Agarwal (1987).

Another approach to solve the nonlinear wave equation was proposed by Chen and Mills (1987a, 1987b).
In this approach the nonlinear Helmholtz is transformed into a phase-amplitude equation. By combining
with energy conservation the phase-amplitude equation is written in integral form. The integral equation
together with the continuity conditions at the interfaces are solved numerically. Recently this method
has been implemented by Lidorikis et al. (1997) to investigate the localized mode solution for a single
nonlinear layer sandwiched between two linear periodic structures. The authors show that the structure
exhibits bistability via a defect mode.

A semi-analytic method has been proposed by Wang et al. (1997) to study the optical bistability in a
linear periodic structure with a single nonlinear defect layer in the center. The transfer matrix method is
used for the linear part and a finite difference method is implemented for the nonlinear layer. The left and
right linear parts and the nonlinear layer are linked using appropriate interface conditions. They found
that the threshold of bistability for the defect structure is much lower than that for the corresponding
periodic structure.

In this paper we apply a finite element method (FEM) together with transparent-influx boundary con-
ditions to study the nonlinear optical response of a finite periodic structure without and with defect. In
Sec. 2 we derive the 1D nonlinear Helmholtz equation including transparent-influx boundary conditions.
Then this equation is transformed into a variational numerical scheme in Sec. 3. For the linear scheme
we improve the standard FEM to get a fourth order accurate scheme that maintains the symmetric-
tridiagonal structure of the finite element matrix. For the full nonlinear equation, we implement the
improved FE scheme for the linear part and a standard FEM for the nonlinear part. Then we obtain a
nonlinear system of equations that will be solved using a weighted-averaged fixed-point iterative method
combined with a continuation method. Recently similar combination has been used by Lu et al. (1998)
to solve a nonlinear equation obtained from the nonlinear transfer matrix formalism. In Sec. 4 we apply
our numerical scheme to study the optical bistability in a finite ideal periodic structure and in a finite
grating with a defect layer. Conclusions and remarks will be given in the last section.



2 Wave equation and its boundary conditions

We consider the propagation of optical electromagnetic field through one-dimensional, periodic, disper-
sionless and lossless stratified dielectric media with a Kerr nonlinearity. The electric and the magnetic
fields have the form,

E (z,t) = [0, E, (2,t),0], 1)
H (2,t) = [Hy (2,1),0,0]. (2)

Assuming that the media are isotropic, the polarization P is parallel to E:
P(z,t) =1[0,P,(2,t),0]. 3)
Maxwell’s equations then reduce to the wave equation

OEy(z,t) 10°Ey(zt)  0*Py(21) 4)
922 2 o M

For a material with a Kerr nonlinearity, the polarization P, is given by (see He and Liu, 1999)
Py () =20 (X () By (2.) 4+ X (2) B, (2. 0) P, (2.0} (5)

where 1+ x(M) (2) = €, (2) = n?(2) describes the linear dielectric constant, n is the refractive index and
x® is the third-order nonlinear susceptibility. If excited by an input beam with a single frequency w,
the polarization (5) does not lead to the generation of high order harmonics in the Kerr medium. Hence
we can look for stationary solutions of the form

E, (2,t) = e“tu (2). (6)
The harmonic time dependence leads to the scalar nonlinear Helmholtz equation (NLH)

d;ng) + 2 (02 (2) + X@ () Ju () ") w (2) = 0, "

where k2 = w?/c? with ¢ = —L- is the speed of light. Notice that equation (7) holds for arbitrary
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n(z) and x® (z). In many applications, we deal with the NLH (7) in the presence of an incident
wave from either a linear or nonlinear homogeneous medium to a scattering structure (e.g. the linear
or nonlinear periodic structure) that is followed with a linear or nonlinear homogeneous region. Here
we assume that the medium outside the scattering structure is linear and homogeneous with refractive
index ng. In order to solve this problem numerically, we have to limit the original unbounded domain to
a finite computational domain. In doing so, we have to provide boundary conditions that can transmit
completely the incident wave and simultaneously be transparent for all outgoing waves. These boundary
conditions are called transparent-influx boundary conditions (TIBC). Such boundary conditions will be
derived as follows. Outside the scattering structure, the Helmholtz equation is linear and has a constant
refractive index ng. Therefore this equation can be factorized as

d . d .
(% — zkn0> (% + zkno) u =0, (8)

yielding the following boundary conditions:

du . .
i iknou = —2ikngA, 2z=0 9)
du .

T + tknou = 0, Z = Zmax- (10)
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Figure 1: Schematic view of two structures considered in this paper. (a) Periodic structure that consists
of N alternating layers. (b) For the defect structure, the center layer with original refractive index n;
and nonlinearity x; is replaced by another layer of index ns and nonlinearity ys.

The first boundary condition (9) is an influx condition for an incident wave with wavenumber k& and
constant amplitude A and is simultaneously transparent for the back scattered field. The second condition
(10) is a transparent boundary condition for the right-travelling wave.

Fig. 1 sketches the two grating structures analyzed in this paper. The periodic structure is a structure
which has 2N + 1 alternating layers of lower index n; and higher index ny. For the defect structure,
the center layer with original refractive index n; is replaced by another layer of index ns. Such a defect
structure may be viewed as two separated multilayer mirrors enclosing the defect layer and thus it can
be considered as a Fabry-Perot cavity (see e.g. Kasyap 1999 and Bayindir et al. 2001). Notice that
the refractive index of the linear medium outside the scattering structure is chosen to be n,. For the
sake of simplicity we normalize the position and frequency variables to a reference wavelength A :
¢ = z/Xo,w = who/c; and the wave amplitude to the incoming wave amplitude: U = u/A. Now the
NLH and the boundary conditions read

2
E0 15 (@ 20 OF) U (©) =0,
%é@ — iwnoU () = —2iwno, ¢=0 (11)
dUdC(_C) + ZCTJTL()U (C) = 0, C: Cmax,

where v = A%y. Hence, v can be considered alternatively as input intensity or strength of the nonlin-
earity.



3 Numerical method

3.1 Linear scheme

In this section we discuss a numerical method to solve equation (11) based on a variational method. We
first concentrate to the linear Helmholtz equation where v = 0 and consider the functional

1 [~ [ldaU)?
FL(U)=_§/ | ~TntWP| (12)
which can also be written as
Fro(U)=F U)+FU)+F;(U) (13)
where
1o [1av)*
F (U)=_§/ G|~
1 S [lqu 2
fal (U):-E/ d_c — @2 |UP| d,
0
1 [ ||av)? 5
F. U:——/ — | —&*? U7 d¢.
> (U) 2 ). |lac U]

As it is assumed that the medium outside the grating structure is linear homogeneous with refractive
index ng, without loss of generality, the solution of the linear part of equation (11) can be written as

exp (—iwno() + r exp (iwno() , ¢ <05
U(Q) = U (<) » € € [0, Gmax] 5 (14)
texp (_i~n0C) » ¢ > Cmax-

By substituting (14) into the functional (13), one can show that if the variational derivative of this
functional vanishes, 0y Fr, = 0, then the field U (¢) satisfies the linear part of NLH (11).

Let us assume that the interval [0, {max] is divided into M subintervals of equal length h = (max/M by
choosing the nodal points (; = jh for j = 0...M. Now we approximate the function U ({) as a linear

combination of a basis {¢m, (¢ )}éw :

IR

M
UQ) =Y Uip; (Q)- (15)
7=0

Here we define the base functions ¢, by piecewise linear interpolation (”tent” function) between the
nodal values ¢y, ((;), which are

¢M(CJ)=6m,J7 ma]:():]-::M (16)

Then U, is the approximation of U (¢) at ¢ = G- Using (15), the functional F, can be approximated

N SR R SR N T
by a function F» such that Fy (U) = F, (U ) where U = ( Uo, Ui, ---, Unm ) . The condition
oy F, = 0 therefore corresponds to

SuFy + VFy (ﬁ) +6yF; =0 (17)
where

Sy Fy = —iwn (0) U (0) + 2iwn (0)
oy F> = —iwn (Cmax) U (CmaX) (18)



which leads to a linear system (by assuming that each discontinuity of the structure coincides with a
grid point)

1 1 ~
(EP + Ehw2Q> U=vw (19)
where
—1—ihwnp 1 0 . . 0
1 -2 1 0 . .
P= 0 S 0 ,
. . 01 -2 1
0 . . 0 1 -1-idhdny
2n3 ng 0 . . 0
ng 2(m3+ni) ni O . .
Q=] o . . . . 0 ,
0 A%, 2(Ah_p+7% 1) ﬁM 1
0 . . 0 ni; 23,
and v = ( —2i@hy 0 .. 0 )T and 7; is the linear index in the interval ((;,{j+1). In the following

this scheme is called the standard finite element method (FEM).

We will examine the order of accuracy of the numerical scheme (19). For uniform medium with index
n, the j-th equation of (19) can be written as

PO DS PS PN
020 + &R (O51 + 40+ Ujpa) =0, (20)
where
277 L (5 7o
620, = 75 (Ts41 =20+ Tj1) - (21)
Using a Taylor expansion, it can be shown that
PU(G) _ opn R dUG) 4
e - 6:Uj — o + O (h*) (22)
U (G) + &A% (¢) = 620, + Lo (U +4U; + U; )+Res (23)
dC2 Jj) — Y% 6 Jj—1 J Jj+1 )
where Res = —75 ~2A2h2d U(C’) + O (h*). This shows that the standard scheme (19) for the interior

points is only second order accurate The accuracy of the standard discrete boundary conditions can be
checked as follows. First we discretized the TIBC at ¢ = 0 (11) using a central difference:

o (U1 i )—iaﬁoﬁo — —2iho, (24)

which is an O (h?) approximation. Then this approximation is used to eliminate the term U_; in (23)
with 5 = 0 to recover the standard FEM at the left boundary (and similarly for the right boundary).
Because both (23) and (24) are of O (h?), the usual FEM at the boundaries is also O (h?).

Now we wish to improved the order of accuracy of the standard scheme (19). By applying the central
difference to the first term of Res and adding it to (23) we obtain a fourth-order scheme

207 (C. o 1 5. 75 - 77
dC(QCJ) O2R2U U(() = ( 12 o2 2h2) 6CU + 6 <Uj_1 +4U; + Uj+1) +0 (h4) (25)

which leads to a linear system of equations (after modifying the boundary condition in a similar way):

1 1, o\ s
(EPI + i Q) U=uv (26)



where

—Q (1 + ’Lh&v)ﬁo) (67)) 0 . - 0
Q) - (a() + ozl) (o7} 0 . .
P = 0 . . . 0 ,
. 0 am—2 —(om—2+oanm—1) ap—1
0 . . 0 aM—1 —Qpr—1 (1 + Zh(:)ﬁM)
with a; = 1 — £&%a3h% and vy = ( —(1+k*A?/12)2iR, 0 ... 0 )T. Notice that the resulting

matrix is still tridiagonal and symmetric. This fourth-order scheme is called improved FEM.

Based on our numerical experiments we found that the numerical amplitude and phase error of the
standard FEM is of O (h?). When we apply the improved FEM (26) to both a uniform structure and
a periodic structure with N = 2 and N = 20, the numerical results show that the numerical error is
indeed O (h*), as expected.

3.2 Nonlinear scheme

In the previous section we have discussed a numerical method to solve the linear Helmholtz equation.
Here we consider the complete NLH (11). The numerical method is basically the same as for the linear
case but with an additional nonlinear term &2~ (¢) |U (¢)|* U (¢). The functional (12) has to be extended
with

Cmax
Fa@) =7 [ @0t ac (27)

As in the previous section, we approximate the additional contribution Fly; as follows

Fni (U) = Fry (ﬁ)

M—1
LY > FiFni; (28)
- 20 ’YJ NL]

=0

where 7; is the nonlinear coefficient in the interval ({;, (j+1),

i (0 0+ 10 (05 010+
1/ .
+6(U UJ+1+2‘UJ-‘ ‘Ujﬂ‘ +U2UJ+1> (29)
1|~ ~ 4
+§‘Uj+1‘ (030741 + 0301 JF‘U]-Jr1 :

and U™ is the conjugate of U. The partial derivatives of Fni (17 ) are

OFNT 2 N
6[']};11 = Mj—1 <3U] lU +‘U_7 1‘ +2 U > j—1
+ i1 (ﬁjAJ_1+ ‘UJ 1‘ +4 ‘) i
+ (U Uy + = ‘UJH‘ +4 ﬁ )(7] (30)
2~
+ 3U]+1U +‘U]+1‘ +2‘U‘ ]+1,



where 11; = 2£%29;. Adding the nonlinear term (30) to the linear scheme (26), we obtain:

(%Pl + %h&PQ +R (ﬁ)) U=v, (31)

where Vm (ﬁ) =R ([7 ) 0. Equation (31) is a system of nonlinear equations that is usually solved
using a fixed-point iterative method (see e.g. Atkinson, 1989):

1 1, - Sy ) Fim+1) _
(hpl + ch Q+R(U )) U — v, (32)

where m = 1,2, 3... is the iteration step with UM is taken from the solution of the linear problem. The
iteration process is stopped when

HUW“) —gm H <e (33)
for small €.

In general the fixed-point iterative algorithm leads to a convergent solution when there exist a unique
solution. However, in the case of bistability where the solution is not unique, this iterative method may

~ (2
not be converging. As an example, we show in Fig. 2 the transmissivity |T|2 = ‘U M| of a defect layer

with N = 10; v1 = 0; v2 = 102 and @ = 3.8483 as a function of the iteration number. The dotted
line is calculated using the fixed-point iterative method that gives a non-convergent solution. In order
to take care of the divergence problem in the fixed-point iterative method, we replace the argument of
R in (32) with the weighted averages of U(™~1 and U(™ such that

1 1, Fm=1/2)) \ frim+1) _
(hP1+6hw Q+R(U ) U — v, (34)

where T(m=1/2) = 5{/(m) 4 (1 — g)U(m~Dwith o, satisfying 0 < o < 1, is a parameter used to control
the weight of U, Since U(M=1/2) is between U™ and U™~ if the series U(™ is convergent then
the series U(™~1/2) is also convergent; and furthermore both of those series have the same limit. Based
on our numerical experiments, the iterative method (34) produces convergent solutions for sufficiently
small values of 0. However the smaller o needs a larger number of iterations. As an example, we plot in
Fig. 2 the transmissivity of a defect structure as a function of the iteration number for 0 = 1,1/3, and
1/10, respectively. Practically we first choose o = 1. If it does not converge, we take a smaller value
of o. For the calculations in this paper we set the tolerance ¢ = 10~¢ and it is found that the iteration
procedure (34) is always converging for o = 1/3.

We notice that the iterative method (34) is only converging to one solution, whereas in the case of
bistability there are two stable solutions, Therefore we still need to find another solution besides the one
obtained from (34). Considering the nature of bistability, i.e. the transmissivity depends not only on
the input intensity alone but also on the history of it, Lu et al. (1998) suggest to include the history
of the input intensity in the calculation. In our case, we start by solving (34) for a nonlinearity value
40 that is relatively far from the bistability using the linear solution as an initial guess UM, Then we
use the solution of this calculation as a starting point for () > 4(®) and so on. In this algorithm, when
the nonlinearity increases from v(%)| the solutions only correspond to the low-transmission level until the
transmission jumps to the high-transmission level. On the contrary, if we decrease the nonlinearity from
the high-transmission state then we can find another stable solution. Thus this algorithm, called the
continuation method, can be used to asses the optical bistability. Another advantage of the continuation
method is that the number of iterations is much smaller if we compare with the weighted-averaged
iterative method alone (34), see Fig. 2 (full-line).
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Figure 2: Transmissivity of a defect structure with N = 10;y; = 0 and 7o = 102 and & = 3.8483 as a
function of the iteration number for different values of o. For ¢ = 1/2 the iteration does not converge and
the result is not shown. However when we implement the combination between the weighted-averaged
iterative method with o = 1/2 and the continuation method, it produces a convergent solution with
much smaller number of iteration.

4 Optical bistability in a finite periodic structure without and
with defect

In this section we apply the numerical scheme that was derived in the previous section to study the
transmission properties of structures as shown in Fig. 1. For both linear and nonlinear numerical
calculations we take ny = 1.125,ny = 2.25,w; = wy = Ag/4. The computational window of width
(14 N/2) g is divided into M equidistant elements with h = Ag/100. All results given here have been
found to be converged with respect to a refinement of the discretization and with respect to the iteration
number. Before proceeding to the nonlinear case we first briefly discuss the linear structure by setting
~ = 0. For the linear periodic or defect structures with N = 10, applying the improved FE scheme in
place of the original one allows us to reduce the number of elements from about 2400 that are necessary
to compute equally accurate results with scheme (19) to the number of 600 for the scheme (26). Within
this accuracy, if we compare with the results of analytic transfer matrix, the improved FEM gave no
observable differences on the scale of figures (3), (4) and (5). For the nonlinear structure, however, we do
not have an exact analytical solution. Therefore we compared our numerical results with the results of
the nonlinear transfer matrix method (Danckaert et al. 1991) using the full nonlinear interface conditions
(Agarwal and Dutta Gupta ,1987). We remark that the nonlinear transfer matrix method is valid only
for the case of weak nonlinearity. We observed a very good agreement between those two methods for
the case of a defect structure but not for a perfect structure (for brevity, the data is not included in
this paper). This can be understood from the fact that the maximum change of refractive index due to
nonlinearity in an ideal structure is much bigger than that of a defect structure.

4.1 Transmission properties of the linear structure

It is well known that an infinite periodic structure has an essential property, i.e. the existence of forbidden
bands prohibiting a certain range of frequencies of light waves to propagate through the structure. In
other words, the electric field with frequencies inside the band gap are completely reflected by the
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Figure 3: Transmission spectra of two periodic linear structures with N = 10 (solid) and N = 20
(dashed). The first band gaps of structures with N = 10 and N = 20 are respectively w € (2.9010,4.4642)
and W € (2.9673,4.3996).

structure. However, in a finite periodic structure, the electric field in general will not be fully reflected.
Consequently, the definition of band gap in a finite structure is questionable. According to common
practice, in this paper we use the term band gap (of a finite structure) for the smallest frequency interval
containing the band gap of the infinite structure that is bordered by two resonance frequencies (which
are called band edge resonances). To get a feeling of this definition, we show in Fig. 3 the transmission
spectrum around the first band gap of two linear finite gratings with 10 and 20 periods, respectively.
As shown in this picture, the increasing number of periods reduces the length of the band gap. The
reduction of the frequency band gap is saturated to the real band gap, i.e. the interval for an infinite
periodic structure, which in this case is w € (2.9905,4.3767). We notice that by adding more layers,
the number of resonance frequencies where the transmission equals one is also increased and specifically
the resonance at the band-edge becomes sharper. We also observe that for an N-period structure there
are exactly N resonance frequencies at the left of the first gap confirming the analysis of Bendickson,
Dowling and Scalora (1996).

When we introduce a defect layer in the middle of a finite periodic structure (see Fig. 1.b), a very narrow
resonance that is isolated in the band gap occurs (see Fig. 4). The frequency of such a resonance is often
called a defect mode frequency (see e.g. Busch, Chan and Soukoulis 1996 and Vasseur et al. 1999). This
is in contrast with the case of a strictly periodic structure where all the resonances are concentrated at
the border of the band gap (see Fig. 3). It is shown in Fig. 4.b that if we increase the number of periods
and keep only one defect layer in the middle, more resonances outside the band gap appear and only
one defect mode frequency inside the band gap exists. We found the defect modes for both N = 10 and
N = 20 periods are approximately at the same frequency, i.e. at @ =~ 3.8599. The isolated resonance for
N = 20 is much thinner than that for N = 10; see the inset in Fig. 4.b. Furthermore, as can be seen in
Fig. 5, the absolute value of the electric field inside the defect structure at the defect mode frequency
is much larger than that of the periodic structure of the same length at the resonance frequency at the
edge of the band gap. This electric field grows significantly when the number of periods is increased.
Thus if a nonlinearity is included, the defect structure will enhance the nonlinear effect.

4.2 Bistable switching by frequency tuning

If a Kerr nonlinearity is introduced in the structure, it causes a change of the local refractive index
and hence a change of the transmission spectrum. In general, a positive (negative) nonlinearity will
shift nonlinearly the entire transmission spectrum to the left (right). Specifically when the resonance
is sharp enough, bistability or multistability can be achieved (see. e.g. Agranovich et al. 1991). For
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Figure 4: (a) Comparison between the transmission spectrum of a periodic structure (dashed-line) and
that of a defect structure (full-line) with N = 10. The defect structure has a very narrow resonance
which is isolated in the band gap. (b) Transmission spectra of a defect structure with N = 10 and
N = 20, respectively. Observe that when the number of periods is increased, more resonances outside

the band gap appear. The isolated resonance of the longer defect structure is much thinner than that of
the shorter one, see inset.

a strictly periodic structure, bistability usually occurs around the resonance peak at the border of the
linear band gap: a positive (negative) nonlinearity effects bistability in the left (right) flanks of the
resonance frequencies. For example we show in Fig. 6 the transmission spectra of the nonlinear periodic
structures (y positive) for N = 10 and N = 20 respectively in the vicinity of the resonance peak at
the top of the first linear band gap. Each spectrum is calculated using a fixed nonlinearity . For a
certain threshold of -, the spectrum exhibits a bistability phenomenon: by increasing the frequency of a
tunable source, the transmission jumps into high-transmission state 1’ after it passes point 1. Similarly,
the low-transmission state 2’ can be reached after passing state 2 when moving in the opposite direction,
see Fig. 6.a. For N = 10 bistability can be obtained when we set 7, = 0.05 in all high index layers
but not when vy, = 0.025. When the number of layers is doubled such that N = 20, the transmission
spectrum already exhibits bistability for 7o = 4 x 10~3. Adding y not only in the high index layers but
also in the low index layers can reduce the threshold for bistability, further see Fig. 6.b.

For a nonlinear defect structure the bistability can occur in the vicinity of the resonance peak at the
bottom of the linear band gap or around the defect mode frequency where the resonance is relatively
sharp. As we notice before the electric field intensity inside the defect structure at the defect mode
frequency is very high so that we can use it to enhance the nonlinear effect. Therefore bistable behavior
can be expected around this frequency with a lower threshold compared with a periodic structure of
the same length. And indeed this case is confirmed by our numerical calculations. Figure 7 shows the
transmission spectra of the nonlinear defect structure with N = 10 for different 4’s. The bistability can
already be observed for v = 5 x 107* and v = 4 x 10~* for the cases where nonlinearity is added in the
high index layers only and in both high and low index layers, respectively.
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Figure 5: The normalized absolute value of the electric field inside (a) a periodic structure, N = 10;
(b) a periodic structure, N = 20; (c) a defect structure, N = 10; (d) a defect structure, N = 20. All
plots correspond to linear resonant configurations with full transmission. The frequencies (a) & = 2.9019
and (b) W = 2.9673 are at the band-edge, and the defect mode frequencies are (¢) @ = 3.8599 and (d)
w = 3.8599. The amplitudes on the input and output segments are equal to one. Observe that the

maximum value of |U| of the defect structure is much larger than than of the periodic structure with
the same length.
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Figure 6: Transmission spectra of two nonlinear periodic structures with (a) N = 10 and (b) N = 20.
Observe that for a certain threshold v, a periodic structure can exhibit a bistable switching.
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Figure 7: Transmission spectra of a nonlinear periodic structure with defect and N = 10. The threshold
for bistability of a defect structure is much lower than that of a periodic structure with the same length.

4.3 Bistability controlled by input intensity

The discussion in the previous section suggests the possibility for the use of a finite (defect) periodic
structure as a device in which bistable switching is controlled by frequency tuning while input electric
field is maintained at fixed power. As can be seen in Fig. 6, we observe that for a certain frequency,
e.g. W ~ 4.375, the transmissivity is found uniquely for relatively low +, then it is multiple-valued for
larger v. However, by increasing the value of v the transmissivity can be unique again. This fact also
shows the possibility of optical bistability controlled by input light intensity with fixed frequency (we
have noticed in Sec. 2 that v can also be considered as the input intensity).

In Fig. 8 we present the input-output characteristics of a finite periodic structure when the frequency
is chosen close to the resonance peak at the top of the first linear band gap. Notice that the resonance
frequencies for N = 10 and N = 20 are respectively & ~ 4.4642 and @ =~ 4.3996. Bistable behavior can
not be obtained when the input field has a frequency that is relatively close to the resonance frequency,
e.g. in the case of W = 4.410 for N = 10 and @w = 4.395 for N = 20. If a smaller frequency is chosen,
bistability is observed; however the smaller frequency (farther from the resonance frequency) will increase
the threshold of v: e.g. for N = 10, the threshold of ~ 0.048 for & = 4.400 is increased to ~ 0.056 if
w = 4.395 is used. The same phenomenon also holds for the case of a longer grating. Furthermore, as in
the case of bistability tuned by frequency, the upswitching threshold can be reduced by increasing the
number of layers. Indeed the bistable behavior in a periodic structure with NV = 20 is already achieved
with upswitching threshold v, = 0.0026 for w = 4.39. We also remark that the threshold of bistability
can also be decreased by introducing the nonlinearity not only in the high index layers but also in the
low index layers (the results of these calculation are not presented here).

A defect layer that is located in the middle of a periodic structure can also be used to reduce the
threshold of bistability. In order to realize it, & should be tuned to a value close to the linear defect
mode frequency. In Fig. 9 we plot the transmissivity of a nonlinear defect structure with N = 10 as
function of input power y. We show in Fig. 9.a. the case when the nonlinearity is only introduced in all
high index layers for three different frequencies. For a frequency that is too close to the defect mode the
bistability cannot be achieved. When the frequency is farther from the defect mode, the upswitching
threshold is increased. In Fig. 9.b. we fix the frequency at & = 3.85 and compare three different cases,
i.e. when the nonlinearity is introduced (1) only in defect layer, (2) only in high index layers and (3)
in both high and low index layers. The thresholds value «y for cases (1), (2) and (3) are approximately
1.6 x 1073,6.85 x 10~ * and 4.12 x 10~ *, respectively. In general these threshold value are much smaller
than that of a nonlinear strictly periodic structure of the same length.
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Figure 8: Input-output characteristics of a finite periodic structure for (a) N = 10 and (b) N = 20
periods versus the input light intensity where the nonlinearity is only introduced in the high refractive

index layers. The threshold for bistability decreases as the number of periods is increased.
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Figure 9: Input-output characteristics of a defect structure for N = 10. (a) The nonlinearity is introduced
in all high index layers with normalized frequency 3.8500, 3.8525 and 3.8550; respectively. (b) The
normalized frequency is set to be 3.85 and the nonlinearity is introduced only in defect layer (dotted-
line); in all high index layers (dashed-line); and in all high and low index layers (full-line).
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5 Conclusions

A numerical scheme to study the nonlinear optical response of a one-dimensional finite grating has
been presented. It directly implements the one-dimensional nonlinear Helmholtz equation and exact
transparent-influx boundary conditions without introducing any approximation except the finite element
discretization. For the present configurations with piecewise constant refractive index and nonlinearity,
even the integrations of the projected functional of the NLH in the finite element space can be calculated
explicitly. This is different from the nonlinear transfer matrix formalisms mentioned in Sec. 1 that are
based on the SVEA and other approximations. Therefore, our method can be used to study the validity
of those approximative methods.

When compared to the usual second order FEM approach, the scheme with fourth order correction as
proposed in this paper provides a significant improvement in term of computational effort for linear
problem.

While our analysis focuses on layer stacks with step-like refractive indices, the presented method can be
applied easily to more general structures, i.e. not necessarily periodic nonlinear gradient or piecewise
constant permittivity profiles.
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