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Abstract

The widely used approach to study the beam propagation in Kerr media
is based on the slowly varying envelope approximation (SVEA) which is also
known as the paraxial approximation. Within this approximation, the beam
evolution is described by the nonlinear Schrödinger (NLS) equation. In this
paper, we extend the NLS equation by including higher order terms to study
the effects of nonparaxiality on the soliton propagation in inhomogeneous Kerr
media. The result is still a one-way wave equation which means that all back-
reflections are neglected. The accuracy of this approximation exceeds the stan-
dard SVEA. By performing several numerical simulations, we show that the
NLS equation produces reasonably good predictions for relatively small degrees
of nonparaxiality, as expected. However, in the regions where the envelope
beam is changing rapidly as in the break up of a multisoliton bound state, the
nonparaxiality plays an important role.

Keywords: Nonparaxiality, inhomogeneous Kerr medium, multisoliton bound state (higher-
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1 Introduction

The study of nonlinear effects on the propagation of electromagnetic waves has
been of considerable recent interest. One of the widely studied nonlinear optical
phenomena is the self-focusing of light beams in a nonlinear Kerr medium; see e.g.,
[1]-[2]. In a Kerr medium, which possesses a positive intensity-dependent change
of refractive index, a high power light beam may focus by creating a lenslike index
profile for itself. When it is balanced by diffraction, the self-focusing can lead to
the formation of a self-trapped light beam. In (1 + 1)D, as in a planar waveguide,
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this kind of balancing is stable against all perturbations as shown by Zakharov and
Shabat [3], and therefore forms a genuine spatial soliton. Here (m + 1)D is meant
for m transverse dimensions and one propagation direction. Spatial solitons have
attracted great interest due to the fascinating phenomena encountered and their
potential applications to all-optical data processing devices; see e.g., [1], [2] and [4].

In the widely used approach, the analysis of light beams propagating in Kerr media
is based on the nonlinear Schrödinger (NLS) equation. In deriving the NLS equation,
one makes the slowly varying envelope approximation (SVEA) in the propagation
direction (or paraxial approximation). In this paper we will study the effects of
nonparaxiality in order to investigate the validity of the (1 + 1)D NLS equation.
This is motivated by the appearance of large variations in amplitude that may result
from the bi-plane wave deformation (i.e. the spatial analog of a bichromatic pulse
in uniform medium [5]), or from the splitting process of the break up of multisoliton
bound states, see e.g., [6], [7] and [8].

The validity of the SVEA is, in fact, already questioned for a long time. It was
started by the prediction of [9] in 1965 that the (2+1)D NLS equation may produce
a catastrophic collapse of a self-focusing beam, i.e. the beam amplitude blows up
to infinity. With the probability for a collapse, a considerable part of studies on the
self-focusing phenomenon has been directed towards finding mechanisms that arrest
the collapse. It has been shown that a medium with saturable nonlinearity (see e.g.
[10] and [11]) and negative contributions to the index of refraction due to avalanche
ionization [12] as well as a quintic nonlinearity [13] can arrest the collapse. However,
these are properties specifying the given medium, while, as pointed out by Feit and
Fleck [14], the self-focusing occurs in a variety of media without catastrophic col-
lapse. This justifies the necessity of a medium-independent mechanism model which
yields beams with nonsingular behavior. In this direction, Feit and Fleck [14] showed
that the unphysical collapse is due to the invalidity of the paraxial wave equation
during the advanced stages of self-focusing. They showed that if the nonparaxiality
is included then the self-focusing is noncatastrophic, i.e. the nonparaxiality replaces
the catastrophic focusing with a sequence of focusing-defocusing cycles. This behav-
ior is confirmed both numerically by Akhmediev et al. ([15] and [16]), by Sheppard
and Haelterman [17] and analytically by Fibich [18].

Up to now, most works on the effects of the nonparaxiality have been restricted to
study the phenomenon of the catastrophic self-focusing arrest. Different from the
(2+1)D case, based on the inverse scattering method, an optical beam propagating
in (1 + 1)D is predicted to be stable against collapse. Therefore the effects of the
nonparaxiality in (1 + 1)D received only little attention. Here we will study the
effects of the nonparaxiality on (1+1)D beam propagation in Kerr media. To do so,
we derive a beam propagation model which includes the weak nonparaxiality using
perturbation theory in section 2. In section 3 we derive a conserved quantity of the
present model and compare with those of the nonlinear Helmholtz (NLH) and NLS
equations. The soliton propagation in uniform media and in a Gaussian waveguide
are respectively discussed in section 4 and section 5. In section 6 we study the break
up of a two-soliton bound state in a Gaussian waveguide. Finally, conclusions and
remarks are given in the last section.
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2 Nonparaxial correction to the NLS equation

We study the propagation of light along the z axis of a planar Kerr waveguide. As
shown in [8], in the presence of a transverse linear refractive index variation, the
evolution of the evelope of the nonparaxial beam is described by the following NLH
equation:

i
∂B

∂Z
+

1

2

∂2B

∂X2
+ |B|2 B + ∆nB + κ2

(

1

2

∂2B

∂Z2
+

1

2
∆n2B

)

= 0, (1)

where the scaled transverse index variation ∆n ≡ ∆n (X) is small, i.e. of the order κ.
In Equation (1), X,Z and B are dimensionless variables where their corresponding
physical quantities are determined by the following transformation

x =
X

κk0

,

z =
Z

κ2k0

, (2)

A (x, z) = κ
√

n0/n2B (X,Z) .

Here n0 is the linear refractive index constant, k0 = ωn0/c is the wavenumber of the
carrier wave and n2 is the coefficient of the nonlinear refractive index. The small
nonparaxiality parameter 0 < κ � 1 can be related to the ratio of the input vacuum
wavelength λ0 and the input beam width w0 : κ = λ0/ (2πw0). The relation between
the beam envelope A (x, z) and the electric field is given by

E =
1

2
{A (z, x) exp [i (k0z − ωt)] + cc.} · y. (3)

Equation (1) is an elliptic equation. In order to solve the NLH equation numerically,
we have to provide boundary conditions that limit the computational domain. In
our case, the required boundary conditions have to be transparent for all outgo-
ing waves and simultaneously model the incident waves; such conditions are called
Transparent-Influx Boundary Conditions (TIBC). To the best of our knowledge, a
proper TIBC for inhomogeneous nonlinear media is not known. Furthermore, apart
from the lack of TIBC, to perform accurate numerical simulations we usually need
a very large number of grid points, making the computations too expensive for a
standard personal computer. Therefore, the standard approach in solving the NLH
equation numerically is to approximate it with an initial value problem. The sim-
plest approximation of Equation (1) that is correct up to O

(

κ2
)

takes the form of
the inhomogeneous NLS equation:

i
∂B

∂Z
+

1

2

∂2B

∂X2
+ |B|2 B + ∆nB = 0. (4)

Equation (4) is derived from Equation (1) by neglecting the nonparaxial effects (the
first term in brackets) and high order terms. In fact, the size of the nonparaxial effect
which arises from the non-slowly varying envelope (non-SVE) is determined by the
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value of κ2. If κ2 is large enough then the nonparaxial effect may become important
and therefore it can no longer be neglected. To reveal the effect of nonparaxiality
we will improve the NLS equation (4) by including terms of the order up to κ3. To
this end, we will evaluate the non-SVE term in the NLH equation by noting that

∂B

∂Z
= i

(

1

2

∂2B

∂X2
+ |B|2 B + ∆nB

)

(5)

is accurate up to order κ where the contribution of the order of κ2 and smaller have
been neglected. Then the non-SVE contribution can be approximated in order κ3 :
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 , (6)

where B∗ stands for the complex conjugate of B. The approximation in (6) repre-
sents one step beyond the slowly varying envelope approximation (SVEA) applied
in the NLS equation, but still assumes a slowly varying envelope such that further
nonparaxial terms of the order κ4 and higher order terms can be neglected. In other
words, the nonparaxial effect is assumed to be weak but nonvanishing.

By replacing the nonparaxial term in Equation (1) with its approximation (6), we
obtain a higher-order nonlinear beam propagation equation

i
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1

2
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 . (7)

From now on we call this equation the nonparaxial nonlinear Schrödinger (NNLS)
equation. Further improvement could be done iteratively but will not be treated
here. Equation (7) takes the form of our standard inhomogeneous NLS equation (4)
with perturbations which arise from the nonparaxiality. The perturbations include
the linear nonparaxial diffraction, linear refractive index change, the diffraction that
depends on the transverse index variation and on the intensity and the quintic non-
linearity. We remark that although Equation (7) involves higher-order contributions,
it still neglects the coupling between forward-propagating waves and backscattering.
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However, with this approximation, the problem is greatly simplified when it is solved
numerically. Indeed the resulting equation is still a one-way wave equation. The
numerical study of a beam propagating in both homogeneous and inhomogeneous
media with Kerr nonlinearity under the influence of weak nonparaxiality will be
given in the next sections. For this purpose the NNLS equation (7) is solved nu-
merically using an implicit Crank-Nicolson scheme [19] and transparent boundary
conditions [20].

Remark In the normalized (inhomogeneous) NLS equation (4), the parameter κ
does not appear explicitly. Therefore the simulation results of this equation can be
interpreted for any κ. As an example, for given two different values of κ, say κ0

and κ1, the normalized NLS equation for those κ’s with the same normalized initial
conditions will produce exactly the same results. However, according to Equation
(2), the real physical situations are different. To distinguish between the results
of paraxial and nonparaxial approaches, the results of paraxial approximation (NLS
equation) are denoted by κ = 0.

3 Power conservation law

Before proceeding the numerical study, we will investigate the power flow conser-
vations of the NLH equation and its approximations. To that end, we multiply
Equation (1), (4) and (7) respectively by B∗, subtract the complex conjugate of it,
and then integrate the resulting expression over the whole transverse coordinate.
With this procedure we obtain the power flow invariant for the NLH equation

d

dZ
[PNLH] = 0, (8)

which means that the value of

PNLH =

∫

∞

−∞

[

|B|2 − i
κ2

2

(

B∗
∂B

∂Z
− B

∂B∗

∂Z

)]

dX (9)

is a conserved quantity during propagation. PNLH represents the dimensionless com-
ponent of the Poynting vector S = 1

2
Re {E×H∗} in the propagation direction in-

tegrated over the whole transverse coordinate. This result is expected physically
because in general theory of wave propagation in media without loss or gain, the
power flow is a quantity that has to be constant. However, in the NLS equation,
this conservation law is incomplete as the nonparaxial effect is completely neglected,
i.e. only the first term in Equation (9):

PNLS =

∫

∞

−∞

|B|2 dX (10)

is conserved. In the case of weak nonparaxiality such that the beam evolution takes
the form of the NNLS equation (7), we obtain the approximate power conservation
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law in the form

PNNLS =

∫

∞

−∞

[

|B|2 +
κ2

2
|B|4

]

dX + O
(

κ4
)

, (11)

which means that for the same initial input, PNNLS ≥ PNLS. We note that Equation
(11) can also be derived by directly substituting Equation (5) into Equation (9).
We further notice that PNLH and PNNLS differ only by O

(

κ4
)

while the difference
between PNLH and PNLS is O

(

κ2
)

. The conservation laws (9) and (11) reduce to
the paraxial conservation law (10) only if κ2 −→ 0.

4 Soliton propagation in uniform media

Before studying the propagation of a soliton in inhomogeneous media, we consider
first the case of a uniform medium, i.e. the index variation ∆n = 0. For this case,
we look for a stationary soliton solution of these three equations (NLH, NLS, NNLS)
by assuming that a shape-preserving solution exists and has the form

B (X,Z) = f (X) exp (iβZ) , (12)

where both f and df/dX vanish as |X| → ∞. Then we substitute this Ansatz
into the three equations, respectively, and solve the resulting equations for f and
β by assuming that f = η and df/dX = 0 at the soliton peak (which is assumed
to occur at X = 0). We find that the three model equations (NLH, NLS, NNLS)
have an exact soliton solution with the same profile but with different longitudinal
wavenumbers β :

B (X,Z) = ηsech (ηX) exp (iβZ) . (13)

The longitudinal wavenumber of the NLH soliton is determined by the quadratic
equation: (1/2) κ2β2

NLH
+ βNLH − (1/2) η2 = 0, i.e.

βNLH =
(

−1 +
√

1 + κ2η2

)

/κ2. (14)

The positive sign in front of the square root in Equation (14) is chosen in order
to be consistent with the wavenumbers of the NLS and NNLS solitons which are
respectively given by

βNLS =
1

2
η2, (15)

βNNLS =

(

1

2
η2 −

1

8
κ2η4

)

. (16)

To see the relation between the solution of the NLH equation and its approximations,
we write the Taylor expansion of βNLH by assuming that κ2η2 is small:

βNLH ≈
1

2
η2 −

1

8
κ2η4 + O

(

κ4
)

. (17)
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It is evident that the wavenumbers of the stationary solution of both NLS and
NNLS equations are approximations of βNLH but with different order of accuracy.
This fact supports the conclusion that the NNLS equation is the reduction of the
NLH equation which includes the lowest order nonparaxial correction under the
NLS scaling. We remark that in the case of the exact stationary solution, the value
of PNLS is also a conserved quantity of the NNLS equation. This can be checked
from the fact that the profile of the stationary solution of the NNLS equation is
not deformed during propagation. Now we study the effect of nonparaxiality in the
case where the initial profile will distort during the evolution, i.e. by considering
the initial value problem (IVP) through Equation (7) with an initial condition:

B (X, 0) = η±sech (X) , (18)

where η± = 1±0.1. Notice that the initial condition (18) corresponds to a stationary
soliton but with a perturbed-amplitude. In the regime of the paraxial approximation,
it is well known from the inverse scattering method that the initial condition with
(18) produces a soliton of unit amplitude plus radiation; see e.g. [21] and [22].
However, to the best of our knowledge, there is no exact theory that describes this
IVP that includes the nonparaxiality. Therefore we will study this IVP numerically
by solving Equation (7) with initial data (18).

In Figure 1 we compare the numerical results of the NLS and the NNLS equations for
amplitude η+ and κ2 = 0.01. We observe that in both paraxial and nonparaxial mod-
els, a ”soliton” with a small excess amplitude (η+) initially experiences self-focusing
(the amplitude increases in the middle and the beam width becomes narrower).
When it reaches the maximum amplitude, the soliton starts to defocus and emits
radiation. The focusing-defocusing behavior with releasing radiation is repeated
almost periodically. The direct observation of the amplitude during propagation
shows that the quantitative difference between the paraxial and nonparaxial models
is very small, see Figure 1.(a) and (b). However, a closer look indicates that the
nonparaxiality produces a longer period of the focusing-defocusing cycles (see Fig-
ure 1.(b)). Furthermore, by monitoring the energy conservation, we conclude that
the paraxial and nonparaxial beam propagation include different physical mecha-
nisms. Indeed, in the case of the NLS equation although the beam follows a series
of decaying focusing-defocusing oscillations which resembles the effect of diffraction
and Kerr nonlinearity, PNLS remains constant, see Figure 1. However, when the
nonparaxiality is included in the calculation, the value of PNLS is oscillating while
PNNLS is conserved. Figure 1.(b) and 1.(c) shows that when the beam is narrow-
ing the contribution of the nonparaxial term in PNNLS increases, taking the energy
from the paraxial part which therefore decreases the NLS invariant PNLS. When the
beam becomes wider (diffracts), our numerical results show that PNLS increases, as
expected.

When the initial ”soliton” has a small deficit amplitude (η−), our numerical calcu-
lations based on the paraxial and nonparaxial equations also show that the beam
experiences a defocusing-focusing oscillation rather than directly diffracts into radi-
ation, see Figure 2. Diffraction broadening for both paraxial and nonparaxial cases
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Figure 1: Propagation of a soliton with amplitude 10% higher (η+ = 1.1) for
κ2 = 0.01 over a distance Z = 40. (a) The beam profiles at the final position
obtained from the NLS equation (dashed) and from the NNLS equation (solid). For
comparison, the initial profile is also plotted (dotted). (b) Evolution of the on-axis
amplitude |B(0, Z)| showing that both paraxial and nonparaxial beams exhibit de-
caying focusing-defocusing cycles. (c) Evolution of PNLS and PNNLS . When the
beam focuses (defocuses) the energy PNLS obtained from then NNLS equation (dot-
ted) decreases (increases) while that calculated from the NLS equation (dashed) is
conserved. The conserved energy of the NNLS (PNNLS) is also plotted (solid).

occurs only when the ”soliton” amplitude is much smaller than 1. The defocusing-
focusing behavior of the paraxial ”soliton” is expected because the stationary parax-
ial soliton in (1+1)D is stable against a small change of initial data. This is different
from the case of the paraxial soliton in (2+1)D where the soliton beam with initial
energy deficit will experience diffraction broadening. Under the nonparaxial effect,
for a small excess or a deficit amplitude, PNLS shows an oscillatory behavior; show-
ing that the nonparaxial contributions control the mechanism of self-focusing and
defocusing (due to diffraction). In (1+1)D case, this behavior may be considered to
be less important. However, this phenomenon becomes essential in (2+1)D in order
to stabilize the soliton beam [17].

5 Soliton propagation in non-uniform media

The propagation of a single soliton beam in an inhomogeneous medium under the
paraxial approximation which is modeled by Equation (4) has been studied. As an
example, when the inhomogeneity ∆n (X) has a triangular profile, called a triangular
waveguide, it has been shown that a stationary soliton beam placed in one side of a
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Figure 2: Same as for Figure 1, but for deficit amplitude η− = 0.9. The amplitude
oscillation shows the soliton stability.

triangular waveguide will oscillate periodically around the center of the waveguide
[6]. A similar soliton behavior has been observed when ∆n (X) has a Gaussian
profile [23]. In this section we study the effects of nonparaxiality on this behavior.
As discussed in section 2, the governing equation that includes the nonparaxial
contributions takes the form of the NNLS equation (7). To avoid the singularity
of the derivative of the transverse index variation which may cause a numerical
problem, we assume that ∆n has a Gaussian profile:

∆n (X) = ∆n0 exp
(

−bX2
)

(19)

rather than a triangular profile. Here, ∆n0 is the maximum index variation and b is
a constant that controls the width of the waveguide. To see the effect of nonparax-
iality, we first look back to the stationary soliton solution of the homogeneous NLS
and NNLS equations, see Equation (13), where the longitudinal wavenumbers are
respectively given by Equation (15) and Equation (16). It is clear that for κ 6= 0
the longitudinal wavenumber of the nonparaxial soliton is always smaller than that
of the paraxial soliton of the same amplitude. We note that κ = 0 means the beam
has infinite width. Indeed, the difference between βNLS and βNNLS is

βNLS − βNNLS = κ2η4/8. (20)

As a result the longitudinal wavelength of the nonparaxial soliton is larger than
that of the paraxial one. That is to say, the nonparaxial soliton experiences a
larger longitudinal force (FZ). Now we make an assumption (that will be justified
later), that if a transverse inhomogeneity ∆n is introduced then both paraxial and
nonparaxial solitons will experience the same transversal force (FX) at any X which
in combination with the longitudinal force FZ causes an oscillatory behavior as
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mentioned above. Since the nonparaxial soliton experiences a larger FZ than the
paraxial one, it will have a longer oscillation period. This situation is illustrated
schematically in Figure 3. From Equation (20) we conclude that the difference
between the oscillation period of the nonparaxial and that of the paraxial case is
larger for a larger degree of nonparaxiality κ or for a higher soliton amplitude η.

NLS

zF

xF

NNLS

zF
NNLSF

NLSF

Figure 3: In the mechanical analogy, both paraxial and nonparaxial solitons in a
Gaussian waveguide experience the same transversal force (Fx) but different longi-
tudinal forces (Fz). Since the longitudinal force in the nonparaxial case is larger,
the oscillation period is longer in that case.

To confirm these theoretical predictions, we perform numerical simulations based on
Equation (7) using the initial condition

B (X, 0) = ηsech [η (X − X0)] , (21)

where X0 represents the initial position of the soliton. In all calculations presented
in this section, we take X0 = −3.5, ∆n0 = 0.1 and b = 0.1. In Figure 4 we show
the simulation results for κ2 = 0.001 and κ2 = 0.01 with the same amplitude η = 1.
For comparison we also plot the result of the NLS equation (κ = 0). Figure 4.(a)
shows the oscillatory behavior of the position of the maximum amplitude. It is found
that the (normalized) oscillation period for larger κ2 is longer than that for smaller
one. This behavior cannot be seen clearly on the scale of Figure 4.(a) because the
differences between the oscillation period of κ2 = 0.001 and 0.01 are very small.
To see this behavior more clearly we plot in Figure 4.(b) the soliton profiles for
different κ2 at the final position of our simulation, i.e. at Z = 200. It is shown
here that the soliton for κ2 = 0.01 arrives later than the others (remember that
Figure 4.(b) corresponds to the left-going beam). The effect of nonparaxiality is
more pronounced when we increase the soliton amplitude as one should expect, e.g.
see Figure 5 for η = 2.

To verify that the larger oscillation period caused by the nonparaxial effect is mainly
due to the smaller longitudinal wavenumber β, we need to improve the NLS equation
(4) in such a way that the homogeneous version of the resulting equation (i.e. for
∆n = 0), called the improved-NLS (iNLS) equation, has a stationary soliton solution
with β = βNNLS. One can check that this requirement is satisfied by the following
equation

i

(

1 +
κ2η2

4 − κ2η2

)

∂B

∂Z
+

1

2

∂2B

∂X2
+ |B|2 B + ∆nB = 0. (22)
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Figure 4: Propagation of a single soliton of amplitude η = 1 in a Gaussian waveguide
for κ2 = 0, 0.001 and 0.01. (a) The position of the maximum amplitude, showing
the oscillatory behavior of both paraxial and nonparaxial solitons. The differences
between the oscillation periods of κ2 = 0, 0.001 and 0.01 are very small such that
they cannot be seen on the scale of this plot. (b) The period differences are clearly
seen in the plot of the soliton profile at the final propagation distance Z = 200.

Figure 6 shows the numerical results of Equation (22) for η = 1 and η = 2 using
κ2 = 0.01. It is evident that those results agree quite well to the results of the
NNLS equation (7), showing that the iNLS equation indeed improves significantly
the period of the soliton oscillation. We conclude that the nonparaxiality in a Kerr
medium which has a Gaussian refractive index profile increases the oscillation period.

6 Propagation of multisoliton bound states

We now consider the initial data:

B (X, 0) = 2η0sech [η0 (X − X0)] . (23)

The initial data (23), in a uniform medium under the paraxial approximation, gen-
erates two single solitons of amplitude η1 = η0 and η2 = 3η0, respectively [21] and
[22]. These two solitons have the same longitudinal velocity and travel together; and
therefore this is called a two-soliton bound state or second-order soliton. During the
propagation this bound state shows a periodic focusing-defocusing (breathing be-
havior) without releasing radiation, see e.g. Figure 7.(a). However, if we introduce
nonparaxiality, we predict the following phenomena:
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Figure 5: Same as for Figure 4, but for η = 2. The effect of nonparaxiality is more
pronounced compared to that of η = 1.

• Similar to the case that is presented in section 4, the initial field (23) gives rise
to a breathing behavior (periodic focusing-defocusing). However, because this
initial condition may be not the perfect initial data to generate a nonparaxial
two-soliton bound state, we may expect that the focusing-defocusing cycles
are accompanied by radiation.

• By considering that the initial data produces at least one nonparaxial soliton
(and the remainder can form another soliton or a radiating entity), these two
entities (soliton and the remainder) will have a smaller longitudinal wavenum-
ber compared to their paraxial version. Therefore the period of the focusing-
defocusing cycle in the nonparaxial case is larger than that in paraxial one.

• As discussed earlier, the nonparaxiality influences the mechanism of the focusing-
defocusing series which in the (2+1)D case can prevent the collapse. This phe-
nomenon can also cause the peak amplitude due to self-focusing in nonparaxial
case to be smaller than in paraxial one.

Indeed, those phenomena are confirmed by our numerical simulations. For example
we plot the numerical results for the case of η0 = 1 and X0 = 0 in Figure 7.

Now we introduce a linear transverse index variation ∆n (X) of the form (19). Under
the paraxial approach, the second-order soliton produced by initial data (23) is
splitted into two individual solitons since each single soliton, which is hidden in the
bound state and initially has the same velocity, experiences a different transverse
acceleration. A higher amplitude soliton experiences a larger transverse acceleration.
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Figure 6: Same as for Figure 4 and 5 but calculated from the iNLS equation for
respectively η = 1 (dotted-line in (a)) and η = 2 (thin-solid-line in (a)) with κ2 =
0.01. Comparison to the results of the NNLS equation shows that the iNLS improves
significantly the NLS equation.

The final result of the splitting process, i.e. a soliton either exits or still oscillates
and collides with others inside the waveguide, depends on the initial amplitude η0

[8]. When the nonparaxial effect is taken into account, the oscillation period of
the single soliton becomes longer. Since the period extension of the soliton with
the larger amplitude is much larger than the one with the smaller amplitude, the
nonparaxiality will of course change the splitting process which may cause a very
different result. In Figure 8 and 9 we present simulation results of Equation (7) using
initial data (23) for two different η0’s and κ2 = 0.001, 0.01. In these calculations,
the Gaussian waveguide is characterized by ∆n0 = 0.1 and b = 0.1 while the initial
position of the bound state is taken to be X0 = −3.5. In nonparaxial simulations,
we observe that the field is radiating. However, the radiation is relatively small
compared to the amplitude of the core parts. For simplicity, we call the core parts
as two solitons with different amplitude (although one or none of them may be just
a radiating entity).

In Figure 8, we show the numerical results for η0 = 0.75. From the NLS simula-
tion (see Figure 8.(a)), it is shown that the two-soliton bound state is splitted into
two individual solitons after some propagation distance where the smaller soliton
is expelled to the right of the waveguide while the higher one is oscillating inside
the waveguide. The result of the nonparaxial model using κ2 = 0.001 also shows a
similar behavior: the smaller soliton exits the waveguide after the splitting process,
but it is slightly less displaced than the paraxial one with respect to the propagation
axis. When we increase the degree of the nonparaxiality to a value κ2 = 0.01, a very
different behavior is observed. The smaller soliton is also oscillating instead of exit-
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Figure 7: Propagation of a paraxial two-soliton bound state in uniform medium (a)
using the NLS equation (denoted by κ2 = 0) and (b) using the NNLS equation with
κ2 = 0.01. Notice that the paraxial case describes the periodic breathing without any
radiation while the nonparaxial approach accounts for the radiated field. In (c) we
plot the on-axis amplitude obtained from the NLS equation (dashed) and the NNLS
equation (solid). It is clearly seen that the nonparaxial propagation has a smaller
peak amplitude and a longer period of the focusing-defocusing cycle compared to
the paraxial case.

ing from the waveguide. Since the oscillation period of these solitons are different,
they show consecutive collisions during propagation.

Further essentially different behavior of paraxial and nonparaxial models can be
observed when we take η0 = 1, see Figure 9. As in the case of η = 0.75, the paraxial
two-soliton bound breaks up into two solitons of different amplitudes. In this case,
after break up, the smaller soliton also exits from the waveguide whereas the higher
one oscillates inside the waveguide. When we implement the NNLS equation with
κ2 = 0.001, a different behavior is observed. The two solitons resulting from the
break up remain oscillating in the waveguide and collide with each other. When the
degree of nonparaxiality is increased to κ2 = 0.01 the nonparaxial model produces
another different phenomenon. Here, the higher amplitude soliton has a much bigger
transversal acceleration such that the bound state ”breaks up” before it swings.
After the break up, the two solitons show parallel oscillations but with different
periods and trajectories which cause a consecutive collision.

In Figure 8 and 9, we also observe that in the regions where the beam envelope
is changing rapidly, e.g. in the area of the splitting process or in the region of
collisions, the beam is radiating. The bigger the amplitude (η0) and the degree of
the nonparaxiality lead to larger radiation, see Figure 8.(c) and Figure 9.(c).
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Figure 8: Break up of the paraxial bound-2-soliton with η0 = 0.75 in a Gaussian
waveguide for κ2 = 0, 0.001 and 0.01.

7 Concluding remarks

We have extended the NLS equation to the NNLS equation by including the higher
order terms of the NLH equation to study the propagation of weakly nonparaxial
(1+1)D beams in inhomogeneous Kerr media. The NNLS equation is still a unidirec-
tional wave equation which means that all back-reflections are neglected. However,
it is shown that the accuracy of the NNLS equation is beyond that of the NLS equa-
tion. Based on the NNLS equation we found analytically and numerically that when
a stationary nonparaxial soliton is placed in a Gaussian waveguide, it oscillates in-
side the waveguide where a higher amplitude soliton has a larger oscillation period.
This behavior is similar to the case of the paraxial soliton. The difference is that the
nonparaxial soliton has a longer oscillation period compared to that of the paraxial
soliton of the same amplitude. A larger degree of nonparaxiality leads to a longer
oscillation period. Based on this propagation property we study numerically the
break up of a multisoliton bound state in a Gaussian waveguide. Since the break up
process of a multisoliton bound state depends very much on the oscillation period
of each soliton contained in the bound state, the behavior of the bound state break
up produced by the NNLS equation may be very different from that predicted by
the paraxial equation.
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Figure 9: Same as for Figure 8, but for η0 = 1.
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