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Abstract

A dispersion optimized finite difference time domain(FDTD) solver for time depen-
dent numerical simulation of integrated optical components is developed. A normalized form of
Maxwell’s equations is derived and is shown to be efficient for the units of the simulated structures
in terms of micrometers for the space and femto seconds for the time. Different finite difference
time dornain(FDTD) schemes were analyzed and a fourth order one was implemented. A normal-
ized form of the Berenger perfectly matched layer(PML) absorbing boundary conditions(ABCs)
is derived. Optimizing and extending the PML-ABCs to model waveguide problems is presented.
Among different excitation techniques that are used to introduce input fields to the FD'TD lattice,
we developed and implemented a one-sided total field/scattered-field (TF/SF) formulation. The
developed tool was used to simulate a number of integrated optics structures. The implementation
of this tool was done in the Prometheus program, a software program of Kymata.
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Chapter 1

Introduction

There are different wave modeling techniques that are successfully used in modeling integrated
optics structures. Finite difference time domain (FDTD), Fourier transform- beam propagation
method (FT-BPM), finite difference-beam propagation method (FD-BPM), and finite element
beam propagation method (FE-BPM) are the most popular and useful techniques for the simulation
of integrated optics structures.

FT-BPM, FD-BPM, or FE-BPM were developed for the case of weakly guiding structures where
the use of the paraxial approximation and the neglection of any back reflections offer solutions in the
frequency-domain. These characteristics limited the use of these methods when these assumptions
are no longer valid.

The FDTD method overcomes the disadvantages of the previous methods. In simulating guided-
wave optics the method became increasingly popular due to its attractive features such as ease of
implementation and full-wave simulation including multiple reflections and radiation.

The first FDTD algorithm as proposed by Yee[?] provides a simple and efficient direct solution
to the Maxwell’s equations. To insure the numerical accuracy of the Yee scheme the size of the
spatial finite difference step size has to be smaller than the wavelength by a certain factor, 10 to
20 points per wavelength (PPW). Alternatively higher order FDTD schemes [?] may be used.

In order to avoid nonphysical reflections from a finite computational window when simulating
an open problem, absorbing boundary conditions (ABCs) need to be implemented at the edges
of the computational window. The ABCs must be able to absorb waves that impinge on the
boundaries regardless of the polarization and the incident angles.

Berenger’s perfectly matched layer (PML) ABCs [?] offer excellent absorbing performance in
FDTD applications. It is based on covering the computational window with another region with
different (artiﬁcial) material properties such that a wave propagating from the interior will not be
reflected and at the same time will decay in the PML region.

Among the other ABCs, unsplit PML [?], [?] or using electric the displacement instead of the
electric field and the uniaxial PML (UPML) [?], [?] are the most successful extensions to Berenger
PML. The unsplit PML and UPML have the advantages of offering possibilities of simulating struc-
tures filled with more complex materials in a straightforward way. Nevertheless, the computation
cost increases due to the introduction of new field components.

While implementation of sources is a straightforward procedure in many FDTD simulations,
certain applications require more complicated procedures. The complications come from the re-
quirements to terminate waveguides that are extended beyond the grid boundaries. All excitation
techniques intend to couple the exact incident power to the FDTD grid, allow back reflected waves
to pass through the excitation position, to avoid the interaction between simulated sources and
the ABCs, and, finally, to decrease the load on the ABCs.

Different techniques can be used to excite waveguide structures. A popular method is the



use of the total-field/scattered-field (TF/SF) method [?]. By introducing the TF/SF formulation,
the simulation domain will be divided into three domains: the total-field domain, the scattered
field domain, and the PML domain. The SF domain offers information about any scattered field
meanwhile decreasing the load on ABCs. We developed and used a one sided TF/SF formulation
that is suited for waveguide problems. Another possible excitation is to define the incident field at
the outer boundary of the PML domain and then allowing this field to propagate and attenuate
inside the PML domain. By using the PML’s properties the corrected/desired field profile can be
recalculated at the inner PMIL-main domain interface [?].

This work reports on developing a time domain simulation tool for simulating integrated optics
structures. This includes choosing and implementing a higher order FDTD scheme, PMLs-ABCs,
and implementing the TF/SF formulation. This is tool is used to simulate a number of 2D
integrated optic structures.

This report consists of seven chapters arranged as follow. After this chapter introduction.
Chapter two introduces normalized Maxwell equations. Chapter three presents different higher
order FDTD schemes and the assessment of the accuracy and dispersion of these schemes. Chapter
four presents the PMLs-ABCs. Chapter five introduces different techniques that are used in exciting
structures. In chapter six we provide visual assessment to the performance of our developed FDTD
tool. Chapter seven presents conclusion and recommendations.



Chapter 2

Preliminaries

This chapter introduces a normalized form of Maxwell’s equations.

2.1 Maxwell’s Equations

Optical fields are time dependent fields and their behavior is fully described by the set of Maxwell
equations. Maxwell’s equations for the electric field vector E, the electric displacement vector
D, the magnetic field vector H, and the magnetic induction vector B in a region without free
charges and currents, filled with linear, isotropic, nondispersive materials with the permittivity €
and permeability g, given in a three dimensional coordinate system are

8D =V x H, (2.1)
8B = -V x E, (2.2)
V-B=0 (2.3)
V-D=0 (2.4)
D = g€, E, (2.5)
B = /i,H. (2.6)

where €y is the permittivity of the free space, €, is the relative dielectric constant, and i is the
permeability of the free space, assuming non-magnetic materials.

Traditionally, most of simulations consider only E and H as explicit unknowns: €€, 0;FE =V xH,
10 H = =V x E. We will call this set of basic equations the EH set.

2.2 Boundary Conditions at a Dielectric Interface

In inhomogeneous media filled with different dielectric materials, the four vectors D, E, H, and B
have to satisfy certain boundary conditions. Fig.(2.1) shows a simple structure consisting of two
media with different dielectric properties.



1 D1, E1, B1,H1

g, D2, E2, B2, H2

Fig.(2.1) Discontinuity in material properties

When surface charges and surface currents are absent, the boundary conditions at the dielectric
interface reduce to [?]:

e The tangential components of the electric field are continuous.

nx E; =nxEs, (2.7)

e The tangential components of the magnetic field are continuous.

nx Hy = n x Hy, (2.8)

e The normal component of the electric displacement is continuous.

n-D; =n- Dy, (2.9)

e The normal component of the magnetic induction is continuous.

n-B;=n-Bs (2.10)

2.3 Normalized Maxwell’s Equations

For two reasons we chose to work with normalized Maxwell’s equations. The first reason is the
difference in order of magnitude between the E: and H fields which may lead to loss of accuracy
and round off errors when discretizing the Maxwell’s equations. The second reason is related to
the units of the problem in terms of micrometers for the space and femto seconds for the time, and
the formulation of the absorbing boundary conditions (ABCs). Working with these units requires
working with very large or very small numbers for all constants such as €y and g

We introduce the normalized fields E as

E=/2E, (2.11)
Ho

With the speed of light in free space ¢g = \/;_ the normalized EH set is, removing the hat above

€ofto’
the normalized fields, °
6O E=coV x H, (2.12)

OH = —¢V x E, (2.13)



2.4 TE and TM Normalized Maxwell Equations

The EH set in a three dimensional rectangular coordinate system (:L’,y, z) is

OuH, = co (0,5, — O, E,) (2.14)
O H, = co (9. Fs — 0, | (2.15)
O,H, = co (8, Fy — ) , (2.16)
€0 By = co (0yH, — 8,Hy), (2.17)
OBy, = co (9, Hy — 0, H,) (2.18)
0B, = co (9, Hy — 0, H,). (2.19)

In a 2D setting, assuming that both the fields and the dielectric structure are constant along
the y—direction, the equations (2.14)-(2.19) decouple into two sets. One set is constituted by
electromagnetic fields with vanishing components F,, F,, H,.

-0, Fy = co (0, Hy — 0, H.,) (2.20)
O H, = cod. By, (2.21)
O H, = —cody 2. (2.22)

These fields are called the TE fields. The second set has vanishing E,, H,, H, components.

OpHy = —co (0, By — O, ;) , (2.23)
€0 FEy = —co0,H,, (2.24)
€0 E, = co0, H,. (2.25)

These fields are called TM fields. The two sets are completely decoupled; there is no common field
vector component. Therefore TE and TM fields constitute two possible classes of solutions for two
dimensional electromagnetic problems.

If the medium is inhomogeneous along the z-direction, then boundary conditions at material

interfaces imply that F,, %, and H, are continuous for TE fields. For TM fields H, and E, are

. . OH, .
continuous while 5. is not.




Chapter 3

High Order FDTD Schemes

It is well known that the original FDTD scheme is dispersive, less accurate, and computational
expensive. In this chapter we shall show explicitly how severe the dispersion of the scheme is.
Firstly, by visual assessment through looking at higher order FDTD schemes and comparing the
accuracy of these scheme and the original one. Secondly, by applying a model problem to formally
check the dispersion limitation of the original and the higher order schemes.

We derive a simple algorithm to perform the LU decomposition specifically for a certain implicit
fourth order accurate FDTD scheme. The new algorithm requires less number of operations to
perform the LU decomposition.

3.1 Differential Equations and Difference Notations in 1D

We introduce and derive some notations for the finite differences that will be used for the FDTD
schemes under consideration. For simplicity we consider a one dimensional finite difference nota-
tion. We apply and analyze different FDTD schemes in 1D and then extend the implementation
of the most appropriate scheme to 2D.

The TE field equations in 1D are

€0 Ly = €00, Hy, (3.1)
OuHy = cod. Iy, (3.2)

As shown in fig.(3.1) and as proposed by Yee [?], the discretization points for E, and H, are
interleaved in space and time.
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Fig.(3.1) Position of discretization points in a 1D grid, circles are for E;, and squares are for H,
for TE fields

We present notations for approximating the first and second derivatives in space or time at
certain position using the neighboring points. We denote by ( either E, or H,. We assume
equidistant discretization with the step size Az in the 2-direction and the time step size At and
define (7 = {(nAt,iAz). §, and 52 are the approximations to the first and second derivative with
respect to z, respectively. We differentiate between two grids. The first grid is the staggered grid
in which F, and H, are located in space as in fig.(3.1), the second grid is the non-staggered grid
in which E, and Hy are located at the same space and time positions.

For the staggered grid we define the following finite difference expressions

62Ci+1/2 = HT +O(Az)2 (33)

G, =G
§,(7FE = 22 R /2 L N2 34
Cz s =+ ( z) ( )

n+1 n
n+é _ Ci — Ci 2

5077 = B + O(At) (3.5)

G-

no_ 23 ity 2

6tCi+% — N + O(At) (3.6)

For higher order FDTD schemes we use also the following non-symmetric stencils, for the second
order spatial derivatives

Ciog — 207 + (i

2 n _ 2
Bajg = "R+ 0(89) (37)
L =T,
2 ,n+3 _ 2i-3/2 i—1/2 i+1/2 2
and for non-staggered grid
n __ Cipr —Gia 2
5,07 = S L 0(A) (39)
8 CTT L ogan?
T=2r >t 2 3.10
Ciq— 267 +¢7
82T = 2 L L O(Az)2, 3.11
5 A+ 0 (3.11)



The minor problem or disadvantage when using staggered grids is the need to perform post-
processing calculation/interpolation to evaluate field values at the same spatial and temporal po-
sitions. These requirements complicate the simplicity of the FDTD scheme and require additional
computation time and programming effort.

3.2 The Yee Scheme

Yee formulated the first FDTD scheme [?] on a staggered grid using a second order accurate
approximation to the spatial and time derivatives. We will refer to it as Yee(2,2), where (2,2)
refers to the order of accuracy in time and space, respectively. For the 1D TE fields given by
equations 3.1 and 3.2, the Yee(2,2) scheme will have the form

&l 8B, F = o 6. H,["2 (3.12)
n _ n+l
5th|i+% = co 52Ey|i+%2 . (3.13)

1
Equations 3.12 and 3.13 are rewritten to yield explicit expressions for E;H'l given Hy *3 and Ey

1 _1
and for H, +2given E} and H; 2. Thus, from initial field distribution Eg, the algorithm can
advance alternatingly I, and H, in time.

The Yee(2,2) algorithm is a conditionally stable algorithm which means that the time and space
steps must satisfy certain criteria. In 1D the stability criteria is
Az

At < == (3.14)
Co

3.3 A Fourth Order Explicit Scheme

The second FDTD scheme we consider is an explicit fourth order accurate scheme in space and
second order in time [?]. We refer to it as Explicit(2,4). Due to the long stencil employed by the
scheme, a one sided fourth order accurate approximation is required to approximate the derivatives
at the boundary points. The difference notations for the fourth order scheme will have the form

Y 1 Y n n Y
6.Ch1y2 = Byl (Ci—l —27C; +27C; 1 — Ci+2) ) (3.15)
n+l 1 ’n,+l n+l n+l n+l
6. 7 = 24 (Ci732/2 —27¢,;_ 12/2 + 2741'4—12/2 - Ci+32/2) ’ (3.16)
and for the first point and last point from the boundary a one sided fourth order approximation is
used 1
8:C1y2 = 57 (=22C5 +17¢7 +9¢5 — 5C5 +(3), (3.17)
n 1 3 3 n n n
0:0N_1/2= 21 (22¢% —17¢x_1 — XN o —5N_3 —CN_4) (3.18)
n+1 1 n+l n+l n+l n+l
6.1 = o7 (=2CT 216 = 3¢ + (T | (3.19)
n+1 1 n+1 n+1 n+1 n+1
6.0n_1 = 21 (23CN—21/2 - 21CN—23/2 + 3CN—25/2 - CN—27/2) : (3.20)
The Explicit scheme remains stable providing the following criteria is satisfied
6 A
A< 222 (3.21)
7 Co



Due to the mixed order of accuracy of the Explicit(2,4) scheme, O(At)2 + O(Az)4, either the
time step should be a function of the O(Az)2 or it should be chosen small enough such that the
total order of accuracy of the scheme with respect to the spatial discretization remains fourth order
and is not reduced to second order. In all situations the Explicit(2,4) scheme introduces better
approximations with minimum additional computation cost.

3.4 A Fourth Order Implicit Scheme with Optimized LU
Decomposition

The third scheme is an implicit fourth order scheme in space and second order in time [?]. We
refer to it as Implicit(2,4). The derivation of the Implicit(2,4) scheme starts with calculating the
truncation error to the fourth order when approximating the first derivatives. This leads to
(A2)?
24

and by introducing a discrete approximation to the operator 83

nt+1 n+1
62Ci+12/’2 = (1 + 83 |i+1/2)azCi+12/2 + O(Az)47 (322)

i+1/2 by 62|i+1/2 as given in 3.11,

we obtain

n+} (A2)®
5zCi+1/2 = (1 + 762)

n+%
% +O(A2)~. (3.23)

i+1/2

To express the first order derivatives 5ZC::1%/2 explicitly in terms of the field values of the
neighboring grid points, the scheme requires the inversion of a matrix which is tridiagonal except
at the first and last rows. This because of the need to use one sided fourth order accurate implicit
approximations to the derivatives at the first and last points at the boundary.

The inversion of the tridiagonal matrix can be replaced by decomposing the matrix using the
LU decomposition. This process will be done twice per each simulation. Once when approximating
the first derivatives of fields at the half grid points and once for those at the main grid points.
Performing the LU decomposition requires 5N operations and L and U will be bidiagonal matrices,
except at a few rows, with one of them containing ones on the diagonal [?]. Therefore it is possible
to store the results of the LU decomposition using only 3 vectors each of size N.

We derive a simple and optimized algorithm that can be used to perform the LU decomposition
specifically for the discretized matrix from the Implicit(2,4) scheme. The discretized matrix of the
system in 3.22 will have the form, dropping the time dependence notation for the moment

2% -5 4 —1 0 . 07]] %Chp [ = Co
1 2 1 0 0 . 0 92135 C2— Gy
0 1 2 1 0 . 0 9l | _ 24 (3= G2 (3.24)
o . . 0 1 22 1 3:C|n_3/a Cno1—Cno2
[0 . . =14 =5 26 || oy, | v =GN
Performing one time gauss elimination to the first and last rows only results in
001 0 00 . o]/ 9l | I by 7
12 1 00 . O 9:Cl32 Co— ¢y
0 1 210 . 0 9:Cls/2 24 (3 —GCo
== 3.25
0o . . 01 21 3:Cln 32 Cno1—Cn-2
[0 . . 00 1 0[] 8|y | by ]

10



with

1
by = W(27(C2 — (1) — (€3 —6o)) (3.26)
and 1
by = W(27(CN—2 —Cn-1) — (Cnos —Cn)) (3.27)

When simulating TE fields, the process of solving the linear system will be repeated twice for 1D
problems, four times for 2D with PML-ABCs, see chapter four, and much more in 3D. For a large
number of time steps, the computation time of the Implicit(2,4) scheme may limit the use of the
scheme for simulating large structures. Hence, any optimization to the LU decomposition process
will effectively reduce the total computation time.

Rather than performing the LU decomposition on the systems in 3.24 or 3.25 as proposed in [?],
we eliminate 9,(|, /2 and 9,(|y_3 /2 from 3.25 and perform the LU decomposition. The resulting
system has the form

1 1 0 o o . o 1[ %Chp ] [ by ]
0o 2 1 0 0 0 9:Cls o b
0o 1 2 1 0 0 9:Cl7/0 b3
o o0 1 2 1 0 9:Claja 2 Ca—Cs
2
0 122 1 0 0 9:Cln_o/2 Cn-a—Cn-s
0 o 0 1 m o || v o
6ZC|N—5/2 N-1
0o . 0 o0 0 Lo ] oy | i by |
with
by = (CQ - Cl) —22b, (3'29>
by =((3—C2) — b1 (3.30)
bv_2= (N 3—Cn 2)—bNn (3.31)
bv-1=(Cn_o—Cno1) — 226y (3.32)

The LU decomposition of the matrix in 3.28 will result in two matrices L and U on the following
form

1 0 0 0 0 1 1 0 0 0 0

0O 1 0 0 0 0 0 1/aq 1 0 0 0

0 g 1 0O 0 0 0 0 1/aq 1 0 0
LxU=10 0 a2 1 0 0 0 0 0 1/as 0 0 (3.33)

0O 0 O ap—1 1 0 0O O 0 1/a,
|0 0 O 0 a 1110 O 0 0 0 I
The values of a; can be calculated using the simple expression
1 1

= — = = L= 2,3,4, ... 3.34
a1 227 Q; 29 _ a’i717 ? 39y % ey P ( )

Due to the round off error and the precision accuracy, we found that a; a2 ag for ¢ = 6 with error
less than 107", This suggest to store only the values a;, 7 = 1.2, ..., 6.

11



This not only reduces the number of operations and the storage requirements to perform the
LU decomposition but also reduces the number of operations to solve the linear system using the
above LU formulation. The algorithm used to solve the linear system LU X = b will be carried out
by solving LY = b with Y = UX. For the first system the algorithm will have the form

Y1 = bl, )/2=b2
Y, = bi—a; 9%Yiy i=345, . ..p+2 (3.35)

and for solving Y = UX

Xp+2 = Ypr2, Xpr1i=Ypri*ap
Xi = (Yi—Xip)%a;q, i=p—1,p—2,..,2
X1 = i-X (3.36)

Performing a simulation in 1D using the Implicit(2,4) scheme requires performing the LU
decomposition once and storing the resulting matrices. For each time step the process of solving
the linear system will be repeated twice, once when solving for the £, field and the second when
solving for the H, field, assuming TE polarization. The implicit scheme is explicit in time and
there is no stability limitatoin for the time step.

3.5 Accuracy of Different FDTD Schemes

We confirm the second and fourth order of accuracy with respect to the spatial discretization of the
previously presented FD'TD schemes in one dimension, similarly the extension in two dimensions.

The following results are obtained for a sinusoidal wave with wavelength 1.0um propagating in
free space in the positive z—direction over a distance of 10um. For €. = 1, angular frequency w,
and wavenumber k, an exact solution of the 1D TE field equations will have the form

Ey(2,t) = sin(wt — k2), (3.37)

H,(2,t) = —sin(wt — k2), (3.38)

which represents a wave traveling in the 4+2-direction with speed ¢o. This solution satisfies the 1D
equations provided that the following dispersion relation is satisfied

k=—. 3.39
2 (3.39)

The wave is introduced into the 1D grid as a hard source; details and different excitation techniques
are explained in chapter five, at the left boundary and on the right boundary a PML of thickness
8 cells was used; details about the PMLs-ABCs are explained in chapter four. In order to avoid
the influence of the BCs on the assessment of the accuracy of the different schemes, the wave will
travel till it reaches the right boundary and the time it takes to do so can easily be estimated.
This total time for the simulation and the time step were fixed for all the schemes and for all the
simulations. The spatial step size Az and the number of grid points IV were chosen as function

of the wavelength, Az = ﬁ, where PPW is the number of points per wavelength which was
chosen to be [5,10,15,....,40].

12
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—&— The Yee(2,2) scheme
—#— The Explicit(2,5) scheme
—H— The Implicit(2,4) scheme
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Fig.(3.2) Ly norm of the difference between the numerical and exact values for E,, field at the last
time step using the Yee(2,2), Explicit(2,4), and Implicit(2,4) scheme at different points per
wavelength, At was not a function of (Az)? as it should be.
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Fig.(3.3) Lo norm of the difference between the numerical and exact values for Fy field at the
last time step using the Yee(2,2), Explicit(2,4), and Implicit(2,4) scheme at different points per
wavelength.

Fig. (3.2) shows the Ly norm calculated for the £, field at the last calculated time step where
the increment of the time step was chosen to a function of be (Az)%. The Explicit(2,4) and
Implicit(2,4) schemes present a substantial improvement compared to the Yee(2,2) scheme even
when the increment of At was not a function of (Az)? as can be seen from fig.(3.3).

The Implicit(2,4) scheme does not introduce a substantial improvement compared to the Ex-
plicit(2,4) except its usefulness in allowing arbitrary time steps. Nevertheless this can be consid-
ered an disadvantage since coarser time steps result in reduction of the overall order of accuracy
of the scheme. Therefore, we choose to focus our implementation and analysis on the Explicit (2,4)
scheme.

3.6 Dispersion of Different FDTD Schemes

Dispersion of the original Yee algorithm is one of the main problems which limits the use of the
algorithm in many applications. The dispersion can be seen as an error in phase velocity due to
the difference in speed between the real wave and the simulated wave. The error accumulates as
the electromagnetic wave advances in the FDTD lattice.

A one dimensional model problem is used to assess the dispersion of the different FDTD schemes
under consideration. It can be extended to 2D problems in a straightforward way. It is based on
approximating the eigenvalues of a solution of the scalar wave equation of either £, or H,.

We combine eq. 3.1 and eq. 3.2 into the following wave equation, assuming propagation in free

14



space, €, = 1,

1
(0., — c_zatt)Ey(zy t)=0. (3.40)
0

E,(2,t) is introduced as a sum of N, orthogonal eigenfunctions of the form

No
Ey(z,t) = Z @y, cos(kn 2) cos(wnt), (3.41)
n=1

leading to an initial condition, assuming a,, = 1

No
Ey(2,0) =) cos(kn2). (3.42)
n=1
The values of &k, have the form )
kn = (n+ E)ﬂ', (3.43)

and the values of z at the left and right edge were chosen such that the E, (z, t) is always zero. For
the numerical results presented in this section, the values of n were 1,2, ...,50, 2z at the left edge
was lum and at the right edge 9um, the time step was chosen to be 0.01fs and the simulation
was run for 2621.44 fs, 262144 iterations. These numbers were used with both the Yee(2,2) and
Explit(2,4) scheme.

() = / B, (2,0)E(2,0)dz. (3.44)

Substituting eq.3.41 and eq. 3.42 in eq. 3.44 f(t) evaluates to

No
f(t) = Z cos(wnt). (3.45)
n=1
A Fourier transform of eq. 3.45 will result in
T Yo
FIf@) =5 ; §(w — wn) (3.46)

Hence, the idea is to evaluate f(t) numerically on the basis of the discretized field, i.e. as

fEt=nit)=N22Y" Ey(z,n At)E(%,0) (3.47)

at each time step and to calculate the Fourier transform of all these calculated values. Then
to monitor the effect for the different FDTD schemes and the use of different mesh size on the
convergence of numerical eigenvalues to the exact ones.

Fig.(3.4) shows the initial condition calculated at ¢ = 0 from eq.3.41 and fig.(3.5) shows the
numerically calculated Fourier transform of the functional f(¢) as given in eq. 3.44.

15



20

10

-10

(2,0) [a.u]

>20

E

-30

-40

_50 I I
1 15 2 25 3

z

Fig. (3.4) The initial condition E(Z,O) for the eigenvalue problem for assessing the dispersion of
the FD'T'D schemes
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Fig.(3.5) Fourier transform for the dispersion problem. The eigenvalues are located at the
positions of the peaks and the data was calculated using the Explicit(2,4) scheme.
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Fig.(3.6) The exact and numeric values of the wavenumbers calculated using the Yee(2,2) scheme
at different mesh sizes.
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Fig. (3.7) The exact and numeric values of the wavenumbers calculated using the Explicit(2,4)

scheme at different mesh sizes.

The results of the model problem are shown in fig.(3.6) and (3.7), these results were obtained for
a coarse time step, which assures the improvement in the solution using the Explicit(2,4) scheme.
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3.7 Conclusion

Three different FDTD scheme were presented including preliminary comparison among these
schemes. Apart from the possibility of choosing arbitrary time steps when using the Implicit(2,4)
scheme, the Explicit(2,4) scheme is a better choice especially when simulating large structures.
The fourth order of accuracy was not achieved when simulating structures either for low or high
index contrast but improvement has been observed in the results compared to those obtained by

the Yee(2,2) scheme.
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Chapter 4

Absorbing Boundary Conditions:
The Perfectly Matched Layers

Two versions of PML are analyzed in this chapter, Berenger PML and unsplit PML [?].

4.1 How Does the PML Work?

We show explicitly in this section how the PMI works. This is explained in 1D and we describe
how it can be extended to higher dimensions.
As illustrated by fig.(4.1), we consider a perpendicularly incident wave from medium A, char-

acterized by €1, pq, and 9; = ’:—11, into medium B, characterized by ea, t5, and 775 = /‘:—j. The

incident, reflected, and transmitted electric field component at £ = O can be written in the form

Ey(2) = Ee P2 (4.1)
A X
Medium A Medium B
PML
I ncident wave
Reflected wave I'I'ransmltted wave —

¥ N

A

J# \
N\
Fig.(4.1) An incident wave on a PML layer

where E,g is the amplitude, (3;, is the propagation constant, and {k = ¢ for incident wave},

{k = r and 8, = —f3,; for reflected wave}, and {k = ¢ for transmitted wave}. 3 is written in the
form

B, = wyR (12)

where the index 7 refers to either medium A or B and w is the angular frequency of the incident

wave.
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If medium A is non-dispersive, € and g of that medium are frequency independent, and if
medium B is a dispersive medium characterized by an electric conductivity o and a magnetic loss

o*, then we have [?]
62262(1—.0 ), (43>
Jwez

fy = i (1 _ ) . (1.4)

Jwptg
The reflection coefficient (the ratio of the reflected wave to the incident wave) can be calculated
using the following expression

r="""N (4.5)
My +
If we assume that
€g = € =¢
Ho = M1 =K, (4‘6)

and substitute equations 4.4, 4.3 in 4.5 then

LN\1/2 -1/2
(=) (-%) -

T= ~7 — =7 (4.7)
(1-5) (%)

The desired situation if medium B represents a PML medium is to have full absorption to the

incident wave, I' = 0.

Then, equating the right hand side of 4.7 to zero, the question is how to choose ¢ and ¢* such
that I' = O remains zero. A simple algebraic manipulation to eq.4.7 yields the following condition
for the choice of ¢ and ¢*

-7, (4.8)

2
=

This condition is the only requirement to effectively absorb an incident wave on the PML medium.

In two dimensions, Berenger showed that splitting one of the field components into two seperate
parts is an additional requirement to have zero reflection provided that eq. 4.8 is satisfied. The
derivation of the PML equations have been shown in details in many references[?], [?].

4.2 Two Dimensional Berenger PML

We extend the normalization of Maxwell equations to the situation when using Berenger PML. This
formulation can be easily applied to structures with homogeneous and inhomogeneous media. The
extension is based on normalizing the conductivity profile that is added by the PML formulation.
Following the normalization, we profile the conductivity in the PML region in such a way that we
satisfy the impedance matching between the two media, the PML and the FDTD domain. This
will be explained in detail, following the normalization.

We give an optimized formulation for the 2D-T'F normalized Maxwell equation, with splitting
the E, field component into two components E,, and E,,. Introducing the conductivity and
magnetic loss terms into the non-normalized Maxwell equations, using the impedance matching
condition given in 4.8, following the normalization steps explained in chapter two, we have

Oz

By = —?BIHZ _ %= g

4.9
(1.9)
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Oz

_% _
Oultys = 20 Hy = Z =By, (4.10)
8tI{ar: = Coaz(Eyz +Eyz) - 7= sz (411)
€0E,
0Cr

When discretizing the previous equation, the value of either o, o, or ¢,, will be zero at the inner
interface of the PML region and increases gradually till maximum value at the outer interface.

For a PML of thickness § and angle € of incidence of a wave that impinges on the PML interface,
the o profile is written in the form

0(2) = Omax((2). (4.13)
The choice of 0, max and {(z) has a great impact on the performance of the ABCs. Polyno-

mial and geometrical grading are most commonly used for profiling the conductivity. In all our
simulations in this thesis, we used the discrete polynomial grading as proposed by Berenger|?]

¢(2) = (g)n (4.14)

where the boundary between the PML region an the inner domain is located at z = 0, with the
PML extending along the positive z-axis.

More accurately the PMI-shape was determined at the discretization points through integration
of ((z) around a space cell to get the average value

zi+ 52
(1) = / s (4.15)

For both cases 0, max Was of the form

o €o€rco(n + 1) In(R(6))
max T 26 cos(6) ’

(4.16)

where R() is the desired value of the reflectivity for the value of the incident angle 6.
Dividing 0.« by €9€r, the normalized 2D-T'F Maxwell equations with the normalized Berenger
PML are

OBys = =20, H, = 0, By, (4.17)
B,E,, = ?azHI —0.E,., (1.18)
OHy = c00y(Eyy + Ey,) — 0,H,, (4.19)
O H, = —co0y(Fyy + Ey,) — 0. H,, (4.20)
and the 2D-TM Maxwell equations with the normalized Berenger PML are
OHyz = 00z F; — 0 Hysz, (4.21)
O Hy, = —c0,E, —0,Hy,, (4.22)
O Ey = —E—OBZ (Hyo + Hy,) — 0, F, (4.23)
o, = —S—fam(Hyz +Hy,,)—0.E,, (4.24)

Fig. (4.2) shows the positions of the discretization points of the TE and TM field in the spatial
2D Yee FDTD grid.
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Fig.(4.2) A 2D staggered lattice structure, The Yee lattice

Another advantage when using this normalization that was briefly mentioned in chapter two is
the fact that working with small or large constants is totally avoided since niether the value of ¢
nor (i, is explicity used in addition, always when discretizing these equations the time step, which
is in femto seconds, will be multiplied by the speed of light, cg.

In the next section we derive the normalized unsplit PML formulation and show that its ap-
proximation is equivalent to the Berenger PML formulation.

4.3 Two Dimensional Unsplit PML Formulation

When numerically discretizing the Maxwell’s equations and depending on the problem and mate-
rials that are being modeled, the use of unsplit PML will be shown to be more efficient than using
the conventional Berenger PML. The unsplit PML [?], [?] is well suited for modeling dispersive
materials either in frequency or time domain. Although throughout this work we only considered
non-dispersive media, still one can use the unsplit PML formulation. We derive the normalized
unsplit PML TE and TM fields and show that they are approximately equaivalent to the Berenger
PML TE and TM fields.

For reasons that will become clear later in this section, the set of three equations ;D = ¢oVxH,
D(w) = ¢.(w)E(w), and 8;H = —¢oV x E, where D is used a third field variable, will be used
alternatively, we name this the DEH set.

The TE fields for the DEH set will have the form

jwDy = —co(8 H, — 8,H,), 1.25

BEy(w) = & (w) Dy(w),
JwH, = cOazEgp
jw-Hz = _COazE:w

4.26
4.27
4.28

o~ o~~~ o~
o e D

and the TM fields will have the form

JwH, = co(0,F, — 0,1,), (4.29)
jwD, = —cod, H,, (4.30)
E,(w) = (w)Dy(w), (4.31)
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jwD, = codpHy, (4.32)
E,(w) = ¢(w)D,(w), (4.33)

Equations 4.25-4.33 are in the frequency domain and have to be transformed to the time domain,

jw in frequency domain becomes % in the time domain and -~ becomes f .
Jw

The TE fields with unsplit PML is written in the form [?]

jw jw
Ey(w) = er(w) Dy(w), (4.35)
-1
jw (1 + ﬁ) (1 + 2) H, = cod,E,, (4.36)
jw jw
—1
jw (1 + @) (1 + 2) H, = —cod, B, (4.37)
Jw jw
and for the TM fields
Oy o,
w (1 + ,—) (1 + ,—) Hy = co(0p iy — 8, Fy), (1.38)
Jw jw
-1
jw <1 + ﬁ) (1 + 2) D, = —cod, H,, (1.39)
jw jw
E,(w) = &(w)Dy(w), (4.40)
~1
jw <1 + 2= ) (1 +Z ) D, = cod,H,, (4.41)
Jw jw
E,(w) =¢€.(w)D,(w). (4.42)

If we move every thing to time domain in eq.4.34-4.37, substitute 4.35 in 4.34, splitting F, into
Ey; + Ey,, and finally neglect the term 0,0, we get the equivalent equation in the Berenger PML
formulation.

Getting the time domain discretization of the unsplit PML formulation is not a straight forward
approach and requires introducing new variables that are non-zero only in the PML layers. We
describe the main lines to get such discretization, details can be found in [?].

We consider the TM fields given in eq. 4.38-4.39. Moving every thing to time domain in eq.4.38,
eq. 4.39 and eq.4.41 will be treated in similar to eq.4.38,

OHy+0,Hy+0,Hy+0,0, /Hy(s)ds = co(0 F, — 0,E;), (4.43)

with the following discrete form for the left hand side of eq.4.43
H. |T.H.”1 - H,|”

, H7 1"
Yyli, Yli, Yl s 1
— +(az|i+0zlj) L 5 L+ 0., 04 Z( 1% ylf,j) (4.44)

It is clear that in addition to the extra field variables, D, and D, in TM fields and the additional
operations to update the basic fields, F, and F,, extra variables need to be defined in the PML
regions at all time steps to store the accumulated sums of field values. However, due to the fact
that the values both ¢, and o, range from O to 1, a possible approximation could be to neglect

T
the term 0,0, [ H,(s)ds in eq.4.43.
0

A preliminary comparison between the two formulation leads to the following
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e Unsplit PML present a direct and simple treatment to dispersive or nonlinear media. This
is because all the characteristics of the media are preserved in eq. 4.26, TE fields.

e Unsplit PML introduces new field components and additional components that needed to be
calculated and stored for all time steps. Nevertheless, some of these additional variables are
non-zero in the PML regions only. In addition to the storage requirements for the additional
variables, the computational time increases per time iteration.

The implementation of unsplit PML formulation for waveguide problems or dispersive materials
was not consider in this work and was left for future work.

4.4 Choice of the PML Parameters

The performance of PML-ABCs is controlled by choosing carefully its parameters. These are the
number of PML cells, the width, the polynomial degree of the conductivity profile, and finally the
desired value for the reflectivity. To choose these parameters we consider a 1D problem in which
two different simulations are performed simultaneously. The first one is the test simulation and the
second one is the reference simulation. A sinusoidal wave with wavelength 1.0 um is excited as a
hard source, details are in chapter five, and is allowed to propagate 5 pm in the z-direction. On the
right boundary of the inner region the 1D region a PML with different values for its parameters
is implemented. The time step and the number of iterations were chosen so as to ensure that
the wave propagating in the reference problem will not encounter any effect from the BCs; i.e.
the reference problem runs on extended computational domain. Then, using the reference and
test simulation the global error is calculated, which is squared difference between the solutions
in the two simulations. This is then added to accumlate the overall global error of the entire
simulation. Fig.(4.3)-fig(4.6) show the variation of this error as a function of the PML parameters.
When looking for the best values for one of the PML parameters the others were chosen optimally.
From these figures we see that 12 cells for the PML width, quadratic polynomial degree, and a
reflectivity of value 10 are a good choice for the PML parameters.
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Fig.(4.5) Overall global error as a function of the number of PML cells

4.5 Numerical and Implementation Concerns for the PML
and Unsplit PML Formulations

In this section we discuss possible ways to implement the discretized Maxwell equations with either
the Berenger PML or the unsplit PML. In addition, we show how to profile the PML conductivity
such that extended waveguides beyond the computational window can be simulated. Finally, we
analyze and select the most efficient and minimized cost implementation.

Fig(4.6) shows the computational domain that is divided into two regions, the FDTD main
region and the PML region. The PML region is divided into eight subregions, front PML, back
PML, left PML, right PML, and four corners. If a waveguide is to be simulated and in order to
allow transimitted fields or back reflected fields to be absorbed totally in the PML regions, the
waveguide is extended into the PML regions as shown in fig(4.6). In the same time the matrix
of the dielectric constant €, is expanded to cover the PML regions. The crucial point is that the
expansion of this matrix should guarantee that two neighboring points in the PML and FDTD
domain have the same value in order to satisfy the impedance match condition to avoid any back
reflection, see the first section of this chapter.
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Fig.(4.6) A simulated waveguide extended into the PML regions in 2D.

The conductivity values for ¢,, similarly for ¢,, in the PML regions do not require to have any
information about the material properties of the PML regions. The main advantages is that o,
will be filled in a line in the z- direction. The values of ¢, along this line will be the same alone
the x-direction.

For the original split-field PML technique, there are two possible ways to discretize the field
components in the PML and inner domain domain regions. The first is to define all the fields
components including the splitted fields for the two domains. The other possibility is to work
with the split-field formulation in the PML regions and to work within the inner region with
the normalized Maxwell equations at zero conductivity. Both approaches have advantages and
disadvantages and the choice depends on the size of the problem. When choosing the second
approach, one has to keep track of the intersections between the PML and inner domain where
E, is the sum of F,, and FE,, in the PML regions for TE fields. The situation becomes even
more complicated when using higher order FDTD schemes for which long stencil discretizations
are employed.

4.6 Conclusion

Two versions of PML-ABCs were presented, the Berenger PML and the unsplit PML. It depends
on the problem, which of these is to be used. Berenger PML is well suited and computationally
efficient for modelling non-dispersive and linear materials. On the other hand, the unsplit PML
can simply be applied to more complex materials as well as to simple ones. The unsplit PML
introduces additional field variables and parameters and hence requires more computational time
and resources.

27



Chapter 5

Sources in FDTD Simulation

Exactly controlling the power of the input signals that are introduced into the FDTD grid, avoiding
the interaction between simulated sources and the ABCs, and decreasing the load on the ABCs
are the most challenging problems in waveguide simulation problems. The situation becomes more
difficult, if information about fields reflected back from any scatterer inside the problem domain is
of practical interest.

There are different techniques that are commonly used for exciting waveguide structures sim-
ulated by the FDTD method. These techniques are: hard source excitation, transparent sources
[?], and total-field/scattered-field(TF /SF) formulation [?].

All of these techniques aim at assigning the input field to one or more field components and in
the same time allow any reflected wave to pass through the input field.

We briefly introduce and compare the effectiveness, applicability, and ease of implementation
of these techniques.

5.1 Hard Source Excitation

Hard source excitation is the simplest way to excite fields in FD'TD simulations. The hard source
excitation is implemented by specifying one or more field components at a given grid point, line, or
plane with a temporal driven function. The major drawback from using the hard source excitation
is that a hard source disregards any wave that is reflected back to the excitation position and
therefore it acts as a perfect reflector. Despite this severe disadvantage, hard source excitation was
used in our work in different situations.

The first occasion of hard source excitation was when assessing the accuracy of the different high
order FDTD schemes applied in 1D TE discussed in chapter four. Only the F, field was assigned
through a driving function at the left grid point of the grid, only PMLs-ABCs were used at the
right side of the domain. The second use of hard source excitation was as a part of implementing
the TF/SF formulation; details will be explained in the TF/SF section. The third occasion with
hard source excitation was to introduce the incident fields by propagating them through PML
regions [?]. We will explain this in details in the following section.

5.2 Excitation Through PMLs Window

The incident field is introduced as a hard source, mathematically speaking, as Dirichlet BC, at
the left grid point or line of the grid and is then propagated through the PMLs. The attenuation
effect of the PMLs is taken into account and used to scale the input field such that fields that reach
the inner side of the left PML will have the same values as if the original one would be present.
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In order to couple the exact power to the inner lattice one has to run a simulation till the wave
reaches the inner boundary of the PMLs and calculate the amplification factor for the hard souce
outside the PML region. Fortunately, the first simulation need neither to run till the last time
step nor for the same grid size as the original one. Only a time and grid size is required that is
sufficient enough to accurately determine the correct amplification factor.

/\ / Ey(x,0)
] R

ni nz N3

A .
z waveguide

Fig.(5.1) introducing incident fields through the PML region
The attenuation of PMLs with width é in the 2-direction is calculated as

5
—kn [ 0.(2)dz
A=ce {

where ,(2) is the profile of the conductivity given in the PML region, n is the refractive index,
which for guided modes is replaced by the effective index, and k is the wavenumber. For a structure
as shown in fig.(5.1), the mode profile is multiplied by the amplification factor that is initially 1/A
and which is corrected for the first run of the desired simulation.

This excitation procedure was implemented in 1D. A sinusoidal wave with wavelength 1.25
pm is introduced at the outer edge of the PML domain and is propagated inside the PML. The
length of the 1D domain is 5 um and the spatial step size was 0.025 pm. The PML parameters are
selected similar to those chosen in previous simulations, the time step was 0.02 fs, and the wave is
propagated a period of 100 fs. The amplification factor is calculated according to eq. 5.1. Fig.(5.2)
shows, in the upper figure, the plot of the E), field as calculated with the Yee(2,2) scheme. In the
lower figure the correct amplification factor was applied and the desired power was excited into the
inner domain. Using the same configurations of the 1D problem, the same amplification factor and
excitation procedure, the figure shows that the Explicit(2,4) does not lead to the desired result. It
is clear from this example that the performance of the PML is scheme dependent. The extension
of this formulation to 2D waveguide problems was not investigated and was left for future work.
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Fig.(5.2) Excitation of 1D FDTD through left PML region for use with the Yee(2,2) scheme and
the Explicit(2,4) scheme.

A drawback from this excitation technique is that the load on the PMLs will be higher especially
in the presence of any scatterer that is positioned perpendicular to the direction of the incident
source. In that case and due to the reflection characteristics of the hard source excitation described
before, it is no longer guaranteed that the same power will be introduced to the FDTD grid!. In
addition it is not possible any more to get any information about any scattered field.

5.3 Transparent Source Excitation

The transparent source excitation [?], [?] is based on introducing the incident field at the inner
PML-FDTD domain interface by propagating two waves, the desired one and another one to be
absorbed in the PML domain. The implementation is done by setting the value of one of the field
components at a source point, in case of a 1D grid for example, equal to the sum of the field
calculated from the FDTD update equations and the incident field. Any field that is reflected back
to the source point will pass through it and in this sense the source point is "transparent”.

This simple transparent excitation technique does not couple the same power to the FDTD
grid as a hard source does. To avoid that, additional storage and calculation time is required. The
difference between the power introduced by the transparent excitation and the desired power is
caused by what is called grid impulse response. Hence, storing and subtracting this grid impulse
response at the excitation positions is the main idea of transparent excitation.

We show how to implement transparent source excitation in 1D and how it can be extended
to 2D. Considering the discretized 1D TE fields given in eq. 3.12 and eq.3.13, a first transparent
excitation will be, for €, = 1,
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where f;‘*l is the incident field at the incidence position with index p. Eq. 5.2-5.4 do not couple
the same power to the 1D FDTD grid. We show explicitly how to avoid that by modifying eq. 5.3
and monitoring the values of F, at the incidence position p at the first time steps, assuming that

COAAZt, the courant number is 1 :

0 0
Eyl, = fps (5.5)
1 0 1 i 0
Byly = ByfS+ (Half = Haliy) + £ + 2, (5.6)
Calculating H’”If and Hﬂil from eq.5.4 and substituting the results in eq. 5.6 result in

1 1
Eylp = fp7 (57)
which is the desired value at the excitation positions. Extending this formulation for any courant
number is not straightforward and more involved in higher dimension. In 1D a power adjusted
transparent source excitation is obtained by replacing eq.5.4 by the following equation

COAt n+3g n+3 n+1 S n—m+1 em .
o (I ) e = i (58)

Eyl:H-l = Eyln +

m=0

where I{f is the grid impulse response at time step k& and the sum term is the cancellation term
that assures to have the adquate power at the excitation location. The grid impulse response is
obtained by exciting the FDTD grid by a Kronecker delta function [?], and by calculating the grid
impulse response from the following update equation

co At

I =fr1
2 2 + AZ

nol nol .

(HIL_ P_H, H?) ,i=p (5.9)
The same procedure is extendable to higher dimensions and one has to run a FDTD simulation
to calculate and store the grid impulse response for the same structure of interest. Due to the
time limitation we only implemented this formulation in 1D and 2D during development of the
PML-ABCs but without caring about power adjustment as explained here. Despite the time and
storage requirements, in our opinion, this formulation is one the most efficient excitation techniques.
Fig.(5.3) shows a plot of the E, field component for a symmetric Y-junction that is excited by this
formulation. Visually one can see that the expected physical behavior for this device is simulated
even when the power was not adjusted.
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Fig.(5.3) The plot of F, field component of a symmetric Y-junction using transparent, source
excitation.
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