Course L.048.24019 / L.048.92038, academic year 2018/2019, summer semester 2019. The course is part of the Master curricula for Electrical Engineering and Electrical Systems Engineering of the Faculty of Electrical Engineering, Computer Science, and Mathematics at the University of Paderborn. Besides students that follow the Engineering tracks, also students from other areas, where phenomena related to electrodynamics play a role, are most welcome. The course language will be English. Lecturer: Manfred Hammer.

Dielectric optical waveguides constitute keyelements of presentday integrated optical / photonic circuits. This course provides an introduction to their theoretical background, and, as such, a sound basis for further, more specific, modelling, simulation, and design work, as well as for experimental activities in the field.
Contents:
At the moment only a preliminary distribution of topics over lectures exists, which may be subject to change, depending on the progress of the course.
Our weekly procedure consists of lectures (14 x) and tutorials / exercises classes (10 x), from week 15, April 10, until week 28, July 11, on Wednesdays and Thursdays, in the time slots 09:15  10:45 (Wed) and 09:15  10:45 (Thu), in the seminar room P1.5.01.4 / P1.5.01.5 in the TETcorridor. The prospective schedule (irregularities are mostly caused by public holidays) is as follows:
Week  Date  Time  Room  
15  We, 10.04.  09:15  10:45  P1.5.01.4  Lecture A (sheets)  Homework (a)  
15  Th, 11.04.  09:15  10:45  P1.5.01.4  Lecture B (sheets)  
16  We, 17.04.  09:15  10:45  P1.5.01.4  Lecture C (sheets)  Homework (b)  
16  Th, 18.04  09:15  10:45  P1.5.01.4  Exercises (a)  
17  We, 24.04.  09:15  10:45  P1.5.01.4  Lecture D (sheets)  
17  Th, 25.04.  09:15  10:45  P1.5.01.4  Tutorial (b)  
18  We, 01.05.    
18  Th, 02.05.  09:15  10:45  P1.5.01.4  Lecture E (sheets)  Homework (c)  
19  We, 08.05.  09:15  10:45  P1.5.01.4  Ex. (b), Tut. (c)  
19  Th, 09.05.    
20  We, 15.05.  09:15  10:45  P1.5.01.4  Lecture E (continued)  
20  Th, 16.05.  09:15  10:45  P1.5.01.4  Exercises (c)  Homework (d)  
21  We, 22.05.  09:15  10:45  P1.5.01.4  Lecture F (sheets)  
21  Th, 23.05.  09:15  10:45  P1.5.01.4  Tutorial (d)  
22  We, 29.05.  09:15  10:45  P1.5.01.4  Lecture G (sheets)  Homework (e)  
22  Th, 30.05.    
23  We, 05.06.  09:15  10:45  P1.5.01.4  Lecture G (continued)  
23  Th, 06.06.  09:15  10:45  P1.5.01.4  Ex. (d), Tut. (e)  
24  We, 12.06.  09:15  10:45  P1.5.01.4  Lecture H (sheets)  Homework (f)  
24  Th, 13.06.  09:15  10:45  P1.5.01.4  Ex. (e), Tut. (f)  
25  We, 19.06.  09:15  10:45  P1.5.01.4  Lecture I (sheets)  
25  Th, 20.06.    
26  We, 26.06.  09:15  10:45  P1.5.01.4  (HCMT) (sheets)  
26  Th, 27.06.  09:15  10:45  P1.5.01.4  Exercises (f)  Homework (g)  
27  We, 03.07.  09:15  10:45  P1.5.01.4  Lecture J (sheets)  
27  Th, 04.07.  09:15  10:45  P1.5.01.4  Tutorial (g)  
28  We, 10.07.  09:15  10:45  P1.5.01.4  (Oblique 2D waves) (sheets)  
28  Th, 11.07.  09:15  10:45  P1.5.01.4  Exercises (g) 
All sheets, as far as provided, are tentative; there is a chance that the contents will be adapted before the lecture, very briefly before the lecture, or, if mistakes are discovered, even after the lecture. Note that, in addition to the sheets, the lectures will rely heavily on a traditional blackboard; it is recommended that students take notes.
The lectures will be accompanied by biweekly homework assignments. These intend to deepen the topics of the lecture, to fill in omitted details, and to apply and extend the theory. While a discussion on the topics of the homework is encouraged, the problems are to be solved and the solutions to be written down individually. Solutions are to be handed in (on paper) at the beginning of the lecture indicated by the dots in the table above, at the latest. Earlier submissions are always welcome. The solutions will be (roughly) corrected and graded. The problems will then be discussed in detail in the following exercises class. Each student is supposed to be able to explain her or his solutions, and each student should regularly present an answer to (part of) a problem. The biweekly tutorials will be an occasion to raise questions on the topics of the course, to ask for specific hints on homework problems, and to continue with the solutions. This obviously requires the students to have studied the problems in advance. The course closes with an oral examination.